cppad
  • Table of Contents
  • user_guide
    • Install
    • Theory
    • AD
    • ADFun
      • record_adfun
      • other_adfun
      • drivers
        • Jacobian
        • Hessian
        • ForOne
        • RevOne
        • ForTwo
        • RevTwo
      • Forward
      • Reverse
      • sparsity_pattern
      • sparse_derivative
      • optimize
      • FunCheck
      • check_for_nan
      • to_csrc
    • preprocessor
    • multi_thread
    • utility
    • ipopt_solve
    • Example
    • speed
  • appendix
  • Index
  • Search
cppad
  • »
  • user_guide »
  • ADFun »
  • drivers
  • View page source

\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)

drivers¶

First and Second Order Derivatives: Easy Drivers¶

  • Contents

Contents¶

Name

Title

Jacobian

Jacobian: Driver Routine

Hessian

Hessian: Easy Driver

ForOne

First Order Partial Derivative: Driver Routine

RevOne

First Order Derivative: Driver Routine

ForTwo

Forward Mode Second Partial Derivative Driver

RevTwo

Reverse Mode Second Partial Derivative Driver

Next Previous

© Copyright .

Built with Sphinx using a theme provided by Read the Docs.