PynamoDB Documentation
Release 5.5.0

Jharrod LaFon

Apr 26, 2023

1 Features

2 Topics

2.1 Usage oo e e e
22 BasicTutorial
23 IndexQueries. e
24 BatchOperations
2.5 Update Operationso v v v v e ..
2.6 Conditional Operations
2.7 Polymorphism
2.8 Custom Attributes oL
2.9 Transaction Operations
2.10 Optimistic Locking
2.11 Rate-Limited Operation
2.12 UsePynamoDB Locally
213 Signals
2.14 PynamoDB Examples
2,15 Settings e
2.16 LowLevel API
2,17 AWS Access
218 Logging. e
2.19 Contributing oL
2.20 ReleaseNotes,
2.21 Versioning Scheme

2.22 Upgrading UnicodeSetAttribute

3 API docs

31 APL ...

4 Indices and tables
Python Module Index

Index

CONTENTS

69

....................... 69

87

89

91

PynamoDB Documentation, Release 5.5.0

PynamoDB is a Pythonic interface to Amazon’s DynamoDB. By using simple, yet powerful abstractions over the
DynamoDB API, PynamoDB allows you to start developing immediately.

CONTENTS 1

PynamoDB Documentation, Release 5.5.0

2 CONTENTS

CHAPTER
ONE

Python 3 support

Support for Unicode, Binary, JSON, Number, Set, and UTC Datetime attributes
Support for DynamoDB Local

Support for all of the DynamoDB API

Support for Global and Local Secondary Indexes

Batch operations with automatic pagination

Iterators for working with Query and Scan operations

Fully tested

FEATURES

https://coveralls.io/r/pynamodb/PynamoDB

PynamoDB Documentation, Release 5.5.0

4 Chapter 1. Features

CHAPTER
TWO

2.1 Usage

TOPICS

PynamoDB was written from scratch to be Pythonic, and supports the entire DynamoDB APL

2.1.1 Creating a model

Let’s create a simple model to describe users.

from pynamodb.models import Model

from pynamodb.attributes import UnicodeAttribute

class UserModel (Model) :

mmn

A DynamoDB User
mmwmn
class Meta:

table_name = 'dynamodb-user'

region = 'us-west-1'
email = UnicodeAttribute (hash_key=True)
first_name = UnicodeAttribute ()
last_name = UnicodeAttribute ()

Models are backed by DynamoDB tables. In this example, the model has a hash key attribute that stores the user’s
email address. Any attribute can be set as a hash key by including the argument hash_key=True. The region attribute

is not required, and will default to us-east-1 if not provided.

PynamoDB allows you to create the table:

>>> UserModel.create_table (read_capacity_units=1,

write_capacity_units=1)

Now you can create a user in local memory:

>>> user = UserModel ('testlexample.com', first_name='Samuel', last_name='Adams')

dynamodb-user<test@example.com>

To write the user to DynamoDB, just call save:

>>> user.save ()

You can see that the table count has changed:

PynamoDB Documentation, Release 5.5.0

>>> UserModel.count ()
1

Attributes can be accessed and set normally:

>>> user.email
'test@example.com'

>>> user.email = 'foo-bar'
>>> user.email

'foo-bar

Did another process update the user? We can refresh the user with data from DynamoDB:

’>>> user.refresh ()

Ready to delete the user?

’>>> user.delete ()

2.1.2 Changing items

Changing existing items in the database can be done using either update() or save(). There are important differences
between the two.

Use of save() looks like this:

user = UserModel.get ('test@example.com')
user.first_name = 'Robert'
user.save ()

Use of update() (in its simplest form) looks like this:

user = UserModel.get ('test@example.com')
user.update (
actions=[
UserModel.first_name.set ('Robert")

save() will entirely replace an object (it internally uses Putltem). As a consequence, even if you modify only one
attribute prior to calling save(), the entire object is re-written. Any modifications done to the same user by other
processes will be lost, even if made to other attributues that you did not change. To avoid this, use update() to perform
more fine grained updates or see the Conditional Operations for how to avoid race conditions entirely.

Additionally, PynamoDB ignores attributes it does not know about when reading an object from the database. As a
result, if the item in DynamoDB contains attributes not declared in your model, save() will cause those attributes to be
deleted.

In particular, performing a rolling upgrade of your application after having added an attribute is an example of such a
situation. To avoid data loss, either avoid using save() or perform a multi-step update with the first step is to upgrade
to a version that merely declares the attribute on the model without ever setting it to any value.

6 Chapter 2. Topics

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

PynamoDB Documentation, Release 5.5.0

2.1.3 Querying

PynamoDB provides an intuitive abstraction over the DynamoDB Query API. All of the Query API comparison oper-
ators are supported.

Suppose you had a table with both a hash key that is the user’s last name and a range key that is the user’s first name:

class UserModel (Model) :

mmn

A DynamoDB User
class Meta:
table_name = 'dynamodb-user'
email = UnicodeAttribute()
first_name = UnicodeAttribute (range_key=True)
last_name = UnicodeAttribute (hash_key=True)

Now, suppose that you want to search the table for users with a last name ‘Smith’, and first name that begins with the
letter ‘J’:

for user in UserModel.query('Smith', UserModel.first_name.startswith('J"')):
print (user.first_name)

You can combine query terms:

for user in UserModel.query('Smith', UserModel.first_name.startswith('J"') | UserModel.
—~email.contains ('domain.com')) :
print (user)

2.1.4 Counting ltems

You can retrieve the count for queries by using the count method:

’print(UserModel.count('Smith', UserModel.first_name.startswith('J"))

Counts also work for indexes:

’print(UserModel.custom_index.count('myfhashfkey')) ‘

Alternatively, you can retrieve the table item count by calling the count method without filters:

’print(UserModel.count()) ‘

Note that the first positional argument to count() is a hash_key. Although this argument can be None, filters must not
be used when hash_key is None:

raises a ValueError
print (UserModel.count (UserModel.first_name == 'John'))

returns count of only the matching users
print (UserModel.count ('my_hash_key', UserModel.first_name == 'John'))

2.1. Usage 7

PynamoDB Documentation, Release 5.5.0

2.1.5 Batch Operations

PynamoDB provides context managers for batch operations.

Note: DynamoDB limits batch write operations to 25 PutRequests and DeleteRequests combined. PynamoDB auto-
matically groups your writes 25 at a time for you.

Let’s create a whole bunch of users:

with UserModel.batch_write () as batch:
for i in range(100):
batch.save (UserModel ('user— @example.com'.format (i), first_name='Samuel',
—~last_name='Adams"'"))

Now, suppose you want to retrieve all those users:

user_keys = [('user— @example.com'.format (i)) for i in range (100)]
for item in UserModel.batch_get (user_keys) :
print (item)

Perhaps you want to delete all these users:

with UserModel.batch_write () as batch:
items = [UserModel ('user— @example.com'.format (x)) for x in range (100)]
for item in items:
batch.delete (item)

2.2 Basic Tutorial

PynamoDB is an attempt to be a Pythonic interface to DynamoDB that supports all of DynamoDB’s powerful features.
This includes support for unicode and binary attributes.

But why stop there? PynamoDB also supports:
* Sets for Binary, Number, and Unicode attributes
* Automatic pagination for bulk operations
* Global secondary indexes
* Local secondary indexes

e Complex queries

2.2.1 Why PynamoDB?

It all started when I needed to use Global Secondary Indexes, a new and powerful feature of DynamoDB. I quickly
realized that my go to library, dynamodb-mapper, didn’t support them. In fact, it won’t be supporting them anytime
soon because dynamodb-mapper relies on another library, boto.dynamodb, which itself won’t support them. In fact,
boto doesn’t support Python 3 either. If you want to know more, I blogged about it.

8 Chapter 2. Topics

https://dynamodb-mapper.readthedocs.io/en/latest/
http://docs.pythonboto.org/en/latest/migrations/dynamodb_v1_to_v2.html
http://jlafon.io/pynamodb.html

PynamoDB Documentation, Release 5.5.0

2.2.2 Installation

’$ pip install pynamodb ‘

Don’t have pip? Here are instructions for installing pip.

Alternatively, if you are running Anaconda or miniconda, use:

’$ conda install -c conda-forge pynamodb

2.2.3 Getting Started

PynamoDB provides three API levels, a Connection, a TableConnection, and a Model. Each API is built on
top of the previous, and adds higher level features. Each API level is fully featured, and can be used directly. Before
you begin, you should already have an Amazon Web Services account, and have your AWS credentials configured
your boto.

Defining a Model

The most powerful feature of PynamoDB is the Model API You start using it by defining a model class that in-
herits from pynamodb.models.Model. Then, you add attributes to the model that inherit from pynamodb.
attributes.Attribute. The most common attributes have already been defined for you.

Here is an example, using the same table structure as shown in Amazon’s DynamoDB Thread example.

Note: The table that your model represents must exist before you can use it. It can be created in this example by calling
Thread.create_table(. ..). Any other operation on a non existent table will cause a TableDoesNotExist exception to be
raised.

from pynamodb.models import Model
from pynamodb.attributes import (
UnicodeAttribute, NumberAttribute, UnicodeSetAttribute, UTCDateTimeAttribute

)

class Thread (Model) :
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttribute (hash_key=True)
subject = UnicodeAttribute (range_key=True)
views = NumberAttribute (default=0)

replies = NumberAttribute (default=0)
answered = NumberAttribute (default=0)

tags = UnicodeSetAttribute ()
last_post_datetime = UTCDateTimeAttribute ()

All DynamoDB tables have a hash key, and you must specify which attribute is the hash key for each Model you
define. The forum_name attribute in this example is specified as the hash key for this table with the hash_key
argument; similarly the sub ject attribute is specified as the range key with the range_key argument.

2.2. Basic Tutorial 9

https://pip.readthedocs.io/en/latest/installing.html
https://www.anaconda.com/distribution/#download-section
http://aws.amazon.com/
https://boto.readthedocs.io/en/latest/boto_config_tut.html
https://boto.readthedocs.io/en/latest/boto_config_tut.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SampleTablesAndData.html

PynamoDB Documentation, Release 5.5.0

Model Settings

The Meta class is required with at least the table_name class attribute to tell the model which DynamoDB table
to use - Meta can be used to configure the model in other ways too. You can specify which DynamoDB region to
use with the region, and the URL endpoint for DynamoDB can be specified using the host attribute. You can also
specify the table’s read and write capacity by adding read_capacity_units and write_capacity_units
attributes.

Here is an example that specifies both the host and the region to use:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread (Model) :
class Meta:

table_name = 'Thread'
Specifies the region
region = 'us-west-1'

Optional: Specify the hostname only if it needs to be changed from the_
—default AWS setting
host = 'http://localhost'
Specifies the write capacity
write_capacity_units = 10
Specifies the read capacity
read_capacity_units = 10
forum_name = UnicodeAttribute (hash_key=True)

Defining Model Attributes

A Model has attributes, which are mapped to attributes in DynamoDB. Attributes are responsible for serializ-
ing/deserializing values to a format that DynamoDB accepts, optionally specifying whether or not an attribute may be
empty using the null argument, and optionally specifying a default value with the default argument. You can specify a
default value for any field, and default can even be a function.

Note: DynamoDB will not store empty attributes. By default, an Attribute cannot be None unless you specify
null=True in the attribute constructor.

DynamoDB attributes can’t be null and set attributes can’t be empty. PynamoDB attempts to do the right thing by
pruning null attributes when serializing an item to be put into DynamoDB. By default, PynamoDB attributes can’t be
null either - but you can easily override that by adding null=True to the constructor of the attribute. When you
make an attribute nullable, PynamoDB will omit that value if the value is None when saving to DynamoDB. It is not
recommended to give every attribute a value if those values can represent null, as those values representing null take
up space - which literally costs you money (DynamoDB pricing is based on reads and writes per second per KB).
Instead, treat the absence of a value as equivalent to being null (which is what PynamoDB does). The only exception
of course, are hash and range keys which must always have a value.

Here is an example of an attribute with a default value:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread (Model) :

(continues on next page)

10 Chapter 2. Topics

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute (hash_key=True, default='My Default Value')

Here is an example of an attribute with a default callable value:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

def my_default_value():
return 'My default value'

class Thread (Model) :
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute (hash_key=True, default=my_default_value)

Here is an example of an attribute that can be empty:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread (Model) :
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute (hash_key=True)
my_nullable_attribute = UnicodeAttribute (null=True)

By default, PynamoDB assumes that the attribute name used on a Model has the same name in DynamoDB. For
example, if you define a UnicodeAttribute called ‘username’ then PynamoDB will use ‘username’ as the field name
for that attribute when interacting with DynamoDB. If you wish to have custom attribute names, they can be overidden.
One such use case is the ability to use human readable attribute names in PynamoDB that are stored in DynamoDB
using shorter, terse attribute to save space.

Here is an example of customizing an attribute name:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread (Model) :
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute (hash_key=True)
This attribute will be called 'tn' in DynamoDB
thread_name = UnicodeAttribute (null=True, attr_name='tn')

PynamoDB comes with several built in attribute types for convenience, which include the following:
* UnicodeAttribute
* UnicodeSetAttribute
* NumberAttribute
* NumberSetAttribute
* BinaryAttribute

* BinarySetAttribute

2.2. Basic Tutorial 11

PynamoDB Documentation, Release 5.5.0

e UTCDateTimeAttribute
* BooleanAttribute

e JSONAttribute

* MapAttribute

All of these built in attributes handle serializing and deserializng themselves.

Creating the table

If your table doesn’t already exist, you will have to create it. This can be done with easily:

>>> if not Thread.exists():

Thread.create_table (read_capacity_units=1, write_capacity_units=1l, wait=True)

The wait argument tells PynamoDB to wait until the table is ready for use before returning.

Deleting a table

Deleting is made quite simple when using a Model:

>>> Thread.delete_table()

2.2.4 Using the Model

Now that you’ve defined a model (referring to the example above), you can start interacting with your DynamoDB

table. You can create a new Thread item by calling the Thread constructor.

Creating ltems

’>>> thread_item = Thread('forum_name', 'forum_subject')

The first two arguments are automatically assigned to the item’s hash and range keys. You can specify attributes during

construction as well:

>>> thread_item = Thread('forum_name', 'forum_subject', replies=10)

The item won’t be added to your DynamoDB table until you call save:

’>>> thread_item.save ()

If you want to retrieve an item that already exists in your table, you can do that with get:

’>>> thread_item = Thread.get ('forum_name', 'forum_subject')

If the item doesn’t exist, Thread.DoesNotExist will be raised.

12 Chapter 2

. Topics

PynamoDB Documentation, Release 5.5.0

Updating ltems

You can update an item with the latest data from your table:

>>> thread_item.refresh ()

Updates to table items are supported too, even atomic updates. Here is an example of atomically updating the view
count of an item + updating the value of the last post.

>>> thread_item.update (actions=][
Thread.views.set (Thread.views + 1),
Thread.last_post_datetime.set (datetime.now()),

1

Update actions use the update expression syntax (see Update Expressions).

Deprecated since version 2.0: update_item () is replaced with update ()

’>>> thread_item.update_item('views', 1, action='add')

2.3 Index Queries

DynamoDB supports two types of indexes: global secondary indexes, and local secondary indexes. Indexes can make
accessing your data more efficient, and should be used when appropriate. See the documentation for more information.

2.3.1 Index Settings

The Meta class is required with at least the projection class attribute to specify the projection type. For Global
secondary indexes, the read_capacity_units and write_capacity_units also need to be provided. By
default, PynamoDB will use the class attribute name that you provide on the model as the index_name used when
making requests to the DynamoDB API. You can override the default name by providing the index_name class
attribute in the Meta class of the index.

2.3.2 Global Secondary Indexes

Indexes are defined as classes, just like models. Here is a simple index class:

from pynamodb.indexes import GlobalSecondaryIndex, AllProjection
from pynamodb.attributes import NumberAttribute

class ViewIndex (GlobalSecondaryIndex) :

mmn

This class represents a global secondary index
mmwn
class Meta:
index_name is optional, but can be provided to override the default name

index_name = 'foo-index'
read_capacity_units = 2
write_capacity_units = 1

All attributes are projected
projection = AllProjection()

(continues on next page)

2.3. Index Queries 13

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

This attribute is the hash key for the index
Note that this attribute must also exist

1in the model

view = NumberAttribute (default=0, hash_key=True)

Global indexes require you to specify the read and write capacity, as we have done in this example. Indexes are said to
project attributes from the main table into the index. As such, there are three styles of projection in DynamoDB, and
PynamoDB provides three corresponding projection classes.

* AllProjection: All attributes are projected.
* KeysOnlyProjection: Only the index and primary keys are projected.
* IncludeProjection (attributes): Only the specified attributes are projected.

We still need to attach the index to the model in order for us to use it. You define it as a class attribute on the model,
as in this example:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class TestModel (Model) :

mmn

A test model that uses a global secondary index
class Meta:

table_name = 'TestModel'
forum = UnicodeAttribute (hash_key=True)
thread = UnicodeAttribute (range_key=True)
view_index = ViewIndex ()
view = NumberAttribute (default=0)

2.3.3 Local Secondary Indexes

Local secondary indexes are defined just like global ones, but they inherit from LocalSecondaryIndex instead:

from pynamodb.indexes import LocalSecondaryIndex, AllProjection
from pynamodb.attributes import NumberAttribute

class ViewIndex (LocalSecondaryIndex) :

mon

This class represents a local secondary index
mmwn
class Meta:
All attributes are projected
projection = AllProjection()
forum = UnicodeAttribute (hash_key=True)
view = NumberAttribute (range_key=True)

Every local secondary index must meet the following conditions: - The partition key (hash key) is the same as that of
its base table. - The sort key (range key) consists of exactly one scalar attribute. The range key can be any attribute. -
The sort key (range key) of the base table is projected into the index, where it acts as a non-key attribute.

14 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.3.4 Querying an index

Index queries use the same syntax as model queries. Continuing our example, we can query the view_index global
secondary index simply by calling query:

for item in TestModel.view_index.query (1) :
print ("Item queried from index: ".format (item))

This example queries items from the table using the global secondary index, called view_index, using a hash key
value of 1 for the index. This would return all TestModel items that have a view attribute of value 1.

Local secondary index queries have a similar syntax. They require a hash key, and can include conditions on the range
key of the index. Here is an example that queries the index for values of view greater than zero:

for item in TestModel.view_index.query('foo', TestModel.view > 0):
print ("Item queried from index: ".format (item.view))

2.3.5 Pagination and last evaluated key

The query returns a ResultIterator object that transparently paginates through results. To stop iterating and
allow the caller to continue later on, use the 1ast_evaluated_key property of the iterator:

def iterate_over_page (last_evaluated_key = None) :
results = TestModel.view_index.query('foo', TestModel.view > O,
limit=10,
last_evaluated_key=last_evaluated_key)
for item in results:

return results.last_evaluated_key

The last_evaluated_key is effectively the key attributes of the last iterated item; the next returned items
will be the items following it. For index queries, the returned last_evaluated_key will contain both the
table’s hash/range keys and the indexes hash/range keys. This is due to the fact that DynamoDB indexes have
no uniqueness constraint, i.e. the same hash/range pair can map to multiple items. For the example above, the
last_evaluated_key will look like:

{

"forum" : {"S": u'.'n},
"thread": {"S": "..."},
"view": {"NH: u.'_n}

2.4 Batch Operations

Batch operations are supported using context managers, and iterators. The DynamoDB API has limits for each batch
operation that it supports, but PynamoDB removes the need implement your own grouping or pagination. Instead, it
handles pagination for you automatically.

Note: DynamoDB limits batch write operations to 25 PutRequests and DeleteRequests combined. PynamoDB auto-
matically groups your writes 25 at a time for you.

Suppose that you have defined a Thread Model for the examples below.

2.4. Batch Operations 15

PynamoDB Documentation, Release 5.5.0

from pynamodb.models import Model
from pynamodb.attributes import (
UnicodeAttribute, NumberAttribute

class Thread (Model) :
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttribute (hash_key=True)
subject = UnicodeAttribute (range_key=True)
views = NumberAttribute (default=0)

2.4.1 Batch Writes

Here is an example using a context manager for a bulk write operation:

with Thread.batch_write () as batch:
items = [Thread('forum- '.format (x), 'subject- '.format (x)) for x in_
—range (1000)]
for item in items:
batch.save (item)

2.4.2 Batch Gets

Here is an example using an iterator for retrieving items in bulk:

item_keys = [('forum— '.format (x), 'subject- '.format (x)) for x in range (1000)]
for item in Thread.batch_get (item_keys):
print (item)

2.4.3 Query Filters

You can query items from your table using a simple syntax:

for item in Thread.query ('ForumName', Thread.subject.startswith ('mygreatprefix')):
print ("Query returned item " . format (item))

Additionally, you can filter the results before they are returned using condition expressions:

for item in Thread.query ('ForumName', Thread.subject == 'Subject', Thread.views > 0):
print ("Query returned item ".format (item))

Query filters use the condition expression syntax (see Condition Expressions).

Note: DynamoDB only allows the following conditions on range keys: ==, <, <=, >, >=, between, and startswith.
DynamoDB does not allow multiple conditions using range keys.

16 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.4.4 Scan Filters

Scan filters have the same syntax as Query filters, but support all condition expressions:

>>> for item in Thread.scan(Thread.forum_name.startswith('Prefix') & (Thread.views >
—10)) :
print (item)

2.4.5 Limiting results

Both Scan and Query results can be limited to a maximum number of items using the limit argument.

for item in Thread.query ('ForumName', Thread.subject.startswith('mygreatprefix'),
—limit=5) :
print ("Query returned item ".format (item))

2.5 Update Operations

The Updateltem DynamoDB operations allows you to create or modify attributes of an item using an update expres-
sion. See the official documentation for more details.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (
ListAttribute, UnicodeAttribute, UnicodeSetAttribute, NumberAttribute

class Thread (Model) :
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttribute (hash_key=True)
subjects = UnicodeSetAttribute (default=dict)
views = NumberAttribute (default=0)
notes = ListAttribute (default=1list)

2.5.1 Update Expressions

PynamoDB supports creating update expressions from attributes using a mix of built-in operators and method calls.
Any value provided will be serialized using the serializer defined for that attribute.

2.5. Update Operations 17

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html

PynamoDB Documentation, Release 5.5.0

DynamoDB Action / Op-
erator

PynamoDB Syntax

Example

SET set(value) Thread.views.set(10)

REMOVE remove() Thread.notes[0].remove()

ADD add(value) Thread.subjects.add({ ‘A New Subject’, ‘Another
New Subject’})

DELETE delete(value) Thread.subjects.delete({ ‘An Old Subject’})

attr_or_value_1 + | attr_or_value_1 Thread.views + 5

attr_or_value_2

attr_or_value_2

attr_or_value_1 -
attr_or_value_2

attr_or_value_1
attr_or_value_2

5 - Thread.views

list_append(attr , value)

append(value)

Thread.notes.append([‘my last note’])

list_append(value , attr)

prepend(value)

Thread.notes.prepend([‘my first note’])

if_not_exists(attr, value)

attr | value

Thread.forum_name | ‘Default Forum Name’

2.6 Conditional Operations

Some DynamoDB operations (Updateltem, Putltem, Deleteltem) support the inclusion of conditions. The user can
supply a condition to be evaluated by DynamoDB before the operation is performed. See the official documentation

for more details.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (

UnicodeAttribute,
)

class Thread (Model) :
class Meta:

NumberAttribute

table_name = 'Thread'

forum_name = UnicodeAttribute (hash_key=True)

subject = UnicodeAttribute (range_key=True)

views = NumberAttribute (default=0)

18

Chapter 2. Topics

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ConditionalUpdate

PynamoDB Documentation, Release 5.5.0

2.6.1 Condition Expressions

PynamoDB supports creating condition expressions from attributes using a mix of built-in operators and method calls.
Any value provided will be serialized using the serializer defined for that attribute. See the comparison operator and
function reference for more details.

DynamoDB Condition PynamoDB Syntax Example

= == Thread.forum_name == ‘Some Forum’
<> 1= Thread.forum_name != ‘Some Forum’

< < Thread.views < 10

<= <= Thread.views <= 10

> > Thread.views > 10

>= >= Thread.views >= 10

BETWEEN between(lower , upper) | Thread.views.between(l, 5)

IN is_in(*values) Thread.subject.is_in(‘Subject’, ‘Other Subject’)
attribute_exists (path) exists() Thread.forum_name.exists()
attribute_not_exists (path) | does_not_exist() Thread.forum_name.does_not_exist()
attribute_type (path , type) | is_type() Thread.forum_name.is_type()
begins_with (path , substr) | startswith(prefix) Thread.subject.startswith(‘Example’)
contains (path , operand) contains(item) Thread.subject.contains(‘foobar’)

size (path) size(attribute) size(Thread.subject) == 10

AND & (Thread.views > 1) & (Thread.views < 5)
OR | (Thread.views < 1) | (Thread.views > 5)
NOT ~ ~Thread.subject.contains(‘foobar’)

Conditions expressions using nested list and map attributes can be created with Python’s item operator []:

from pynamodb.models import Model
from pynamodb.attributes import (

ListAttribute, MapAttribute, UnicodeAttribute
)

class Container (Model) :
class Meta:
table_name = 'Container'

name = UnicodeAttribute (hash_key = True)
my_map = MapAttribute ()
my_list = ListAttribute()

print (Container.my_map['foo'].exists () | Container.my_list[0].contains('bar'))

Conditions can be composited using & (AND) and | (OR) operators. For the & (AND) operator, the left-hand side
operand can be None to allow easier chaining of filter conditions:

condition = None

if query.name:
condition &= Person.name == query.name

if query.age:
condition &= Person.age == query.age

results = Person.query (..., filter_condition=condition)

2.6. Conditional Operations 19

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html

PynamoDB Documentation, Release 5.5.0

2.6.2 Conditional Model.save

This example saves a Thread item, only if the item exists.

thread_item = Thread('Existing Forum', 'Example Subject')

DynamoDB will only save the item if forum _name exists
print (thread_item.save (Thread. forum_name.exists())

You can specify multiple conditions
print (thread_item.save (Thread. forum_name.exists () & Thread.subject.contains ('foobar
—")))

2.6.3 Conditional Model.update

This example will update a Thread item, if the views attribute is less than 5 OR greater than 10:

thread_item.update (condition=(Thread.views < 5) | (Thread.views > 10))

2.6.4 Conditional Model.delete

This example will delete the item, only if its views attribute is equal to O.

print (thread_item.delete (Thread.views == 0))

2.6.5 Conditional Operation Failures

You can check for conditional operation failures by inspecting the cause of the raised exception:

try:
thread_item.save (Thread.forum_name.exists())
except PutError as e:
if isinstance(e.cause, ClientError):
code = e.cause.response['Error'].get ('Code")
print (code == "ConditionalCheckFailedException")

2.7 Polymorphism

PynamoDB supports polymorphism through the use of discriminators.

A discriminator is a value that is written to DynamoDB that identifies the python class being stored.

20 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.7.1 Discriminator Attributes

The discriminator value is stored using a special attribute, the DiscriminatorAttribute. Only a single DiscriminatorAt-
tribute can be defined on a class.

The discriminator value can be assigned to a class as part of the definition:

class ParentClass (MapAttribute) :
cls = DiscriminatorAttribute ()

class ChildClass (ParentClass, discriminator='child'):
pass

Declaring the discriminator value as part of the class definition will automatically register the class with the discrimi-
nator attribute. A class can also be registered manually:

class ParentClass (MapAttribute) :
cls = DiscriminatorAttribute ()

class ChildClass (ParentClass) :
pass

ParentClass._cls.register_class(ChildClass, 'child")

Note: A class may be registered with a discriminator attribute multiple times. Only the first registered value is used
during serialization; however, any registered value can be used to deserialize the class. This behavior is intended to
facilitate migrations if discriminator values must be changed.

Warning: Discriminator values are written to DynamoDB. Changing the value after items have been saved to the
database can result in deserialization failures. In order to read items with an old discriminator value, the old value
must be manually registered.

2.7.2 Model Discriminators

Model classes also support polymorphism through the use of discriminators. (Note: currently discriminator attributes
cannot be used as the hash or range key of a table.)

class ParentModel (Model) :
class Meta:

table_name = 'polymorphic_table'
id = UnicodeAttribute (hash_key=True)
cls = DiscriminatorAttribute ()

class FooModel (ParentModel, discriminator='Foo'):
foo = UnicodeAttribute ()

class BarModel (ParentModel, discriminator='Bar'):
bar = UnicodeAttribute ()

BarModel (id="Hello', bar='World!') .serialize()
{'id': {'S': 'Hello'}, 'cls': {'S': 'Bar'}, 'bar': {'S': 'World!'}}

2.7. Polymorphism 21

PynamoDB Documentation, Release 5.5.0

Note: Read operations that are performed on a class that has a discriminator value are slightly modified to ensure that
only instances of the class are returned. Query and scan operations transparently add a filter condition to ensure that
only items with a matching discriminator value are returned. Get and batch get operations will raise a ValueError
if the returned item(s) are not a subclass of the model being read.

2.8 Custom Attributes

Attributes in PynamoDB are classes that are serialized to and from DynamoDB attributes. PynamoDB provides
attribute classes for all DynamoDB data types, as defined in the DynamoDB documentation. Higher level attribute
types (internally stored as a DynamoDB data types) can be defined with PynamoDB. Two such types are included with
PynamoDB for convenience: JSONAttribute and UTCDateTimeAttribute.

2.8.1 Attribute Methods

All Attribute classes must define three methods, serialize, deserialize and get_value. The
serialize method takes a Python value and converts it into a format that can be stored into DynamoDB. The
get_value method reads the serialized value out of the DynamoDB record. This raw value is then passed to the
deserialize method. The deserialize method then converts it back into its value in Python. Additionally,
a class attribute called attr_type is required for PynamoDB to know which DynamoDB data type the attribute is
stored as. The get_value method is provided to help when migrating from one attribute type to another, specifically
with the BooleanAttribute type. If you're writing your own attribute and the att r_t ype has not changed you
can simply use the base At t ribute implementation of get_value.

2.8.2 Writing your own attribute

You can write your own attribute class which defines the necessary methods like this:

from pynamodb.attributes import Attribute
from pynamodb.constants import BINARY

class CustomAttribute (Attribute) :

mmn

A custom model attribute

mmn

This tells PynamoDB that the attribute is stored in DynamoDB as a binary
attribute
attr_type = BINARY

def serialize(self, wvalue):
convert the value to binary and return it

def deserialize(self, value):
convert the value from binary back into whatever type you require

22 Chapter 2. Topics

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html

PynamoDB Documentation, Release 5.5.0

2.8.3 Custom Attribute Example

The example below shows how to write a custom attribute that will pickle a customized class. The attribute itself is
stored in DynamoDB as a binary attribute. The pickle module is used to serialize and deserialize the attribute. In
this example, it is not necessary to define attr_type because the PickleAttribute class is inheriting from
BinaryAttribute which has already defined it.

import pickle
from pynamodb.attributes import BinaryAttribute, UnicodeAttribute
from pynamodb.models import Model

class Color (object):

mmn

This class is used to demonstrate the PickleAttribute below
mmwn
def _ init_ (self, name):

self.name = name

def @ str_ (self):
return "<Color: {}>".format (self.name)

class PickleAttribute (BinaryAttribute) :
mmn
This class will serializer/deserialize any picklable Python object.
The value will be stored as a binary attribute in DynamoDB.

mmn

def serialize(self, value):
mmn
The super class takes the binary string returned from pickle.dumps
and encodes it for storage in DynamoDB

mnn

return super (PickleAttribute, self) .serialize (pickle.dumps (value))

def deserialize(self, wvalue):
return pickle.loads (super (PickleAttribute, self) .deserialize(value))

class CustomAttributeModel (Model) :

mmon

A model with a custom attribute

mmwn

class Meta:
host = 'http://localhost:8000"
table_name = 'custom_attr'
read_capacity_units = 1
write_capacity_units = 1

id = UnicodeAttribute (hash_key=True)
obj = PickleAttribute()

Now we can use our custom attribute to round trip any object that can be pickled.

>>>instance = CustomAttributeModel ()
>>>instance.obj = Color('red')
>>>instance.id = 'red'

>>>instance.save ()

(continues on next page)

2.8. Custom Attributes 23

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

>>>instance = CustomAttributeModel.get ('red')
>>>print (instance.obj)
<Color: red>

2.8.4 List Attributes

DynamoDB list attributes are simply lists of other attributes. DynamoDB asserts no requirements about the types
embedded within the list. Creating an untyped list is done like so:

from pynamodb.attributes import ListAttribute, NumberAttribute, UnicodeAttribute
class GroceryList (Model) :
class Meta:

table_name = 'GroceryListModel'

store_name = UnicodeAttribute (hash_key=True)
groceries = ListAttribute/()

Example usage:

GroceryList (store_name='Haight Street Market',
groceries=['bread', 1, 'butter', 6, 'milk', 1])

PynamoDB can provide type safety if it is required. Currently PynamoDB does not allow type checks on anything
other than subclasses of Attribute. We’re working on adding more generic type checking in a future version.
When defining your model use the o f= kwarg and pass in a class. PynamoDB will check that all items in the list are
of the type you require.

from pynamodb.attributes import ListAttribute, NumberAttribute

class OfficeEmployeeMap (MapAttribute) :
office_employee_id = NumberAttribute ()
person = UnicodeAttribute ()

class Office (Model) :
class Meta:
table_name = 'OfficeModel’
office_id = NumberAttribute (hash_key=True)
employees = ListAttribute (of=0fficeEmployeeMap)

Example usage:

empl = OfficeEmployeeMap (
office_employee_id=123,
person='"justin'

)

emp2 = OfficeEmployeeMap (
office_employee_id=125,
person='"lita'

)

emp4 = OfficeEmployeeMap (
office_employee_id=126,

(continues on next page)

24 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

person='garrett'

Office (
office_id=3,
employees=[empl, emp2, emp3]
) .save () # persists

Office (

office_id=3,

employees=["'justin', 'lita', 'garrett']
) .save () # raises ValueError

2.8.5 Map Attributes

DynamoDB map attributes are objects embedded inside of top level models. See the examples here. When imple-
menting your own MapAttribute you can simply extend MapAttribute and ignore writing serialization code. These
attributes can then be used inside of Model classes just like any other attribute.

from pynamodb.attributes import MapAttribute, UnicodeAttribute

class CarInfoMap (MapAttribute) :
make = UnicodeAttribute (null=False)
model = UnicodeAttribute (null=True)

As with a model and its top-level attributes, a PynamoDB MapAttribute will ignore sub-attributes it does not know
about during deserialization. As a result, if the item in DynamoDB contains sub-attributes not declared as properties
of the corresponding MapAttribute, save() will cause those sub-attributes to be deleted.

DynamicMapAttribute is a subclass of MapAttribute which allows you to mix and match defined attributes
and undefined attributes.

from pynamodb.attributes import DynamicMapAttribute, UnicodeAttribute

class CarInfo (DynamicMapAttribute) :
make = UnicodeAttribute (null=False)
model = UnicodeAttribute (null=True)

car = CarInfo(make="'Make-A', model="'Model-A', year=1975)
other_car = CarInfo(make='Make-A', model='Model-A', year=1975, seats=3)

2.9 Transaction Operations

Transact operations are similar to Batch operations, with the key differences being that the writes support the inclusion
of condition checks, and they all must fail or succeed together.

Transaction operations are supported using context managers. Keep in mind that DynamoDB imposes limits on the
number of items that a single transaction can contain.

Suppose you have defined a BankStatement model, like in the example below.

2.9. Transaction Operations 25

https://github.com/pynamodb/PynamoDB/blob/master/examples/office_model.py
https://github.com/pynamodb/PynamoDB/blob/master/docs/quickstart.rst#changing-items

PynamoDB Documentation, Release 5.5.0

from pynamodb.models import Model
from pynamodb.attributes import BooleanAttribute, NumberAttribute, UnicodeAttribute

class BankStatement (Model) :
class Meta:
table_name = 'BankStatement'

user_id = UnicodeAttribute (hash_key=True)
account_balance = NumberAttribute (default=0)
is_active = BooleanAttribute ()

2.9.1 Transact Writes

A TransactWrite can be initialized with the following parameters:
e connection (required) - the Connection used to make the request (see Low Level API)

e client_request_token - an idempotency key for the request (see ClientRequestToken in the DynamoDB
API reference)

* return_consumed_capacity - determines the level of detail about provisioned throughput consumption
that is returned in the response (see ReturnConsumedCapacity in the DynamoDB API reference)

e return_item_collection_metrics - determines whether item collection metrics are returned (see Re-
turnltemCollectionMetrics in the DynamoDB API reference)

Here’s an example of using a context manager for a TransactWrite operation:

from pynamodb.connection import Connection
from pynamodb.transactions import TransactWrite

Two existing bank statements in the following states
userl_statement = BankStatement ('userl', account_balance=2000, is_active=True)
user2_statement = BankStatement ('user2', account_balance=0, is_active=True)

userl_statement.save ()
user2_statement.save ()

connection = Connection ()

with TransactWrite (connection=connection, client_request_token='super-unique-key') as
—transaction:
attempting to transfer funds from userl's account to user2's
transfer_amount = 1000
transaction.update (
BankStatement (user_id="userl'),
actions=[BankStatement.account_balance.add (transfer_amount » -1)7,

[

condition=(
(BankStatement .account_balance >= transfer_amount) &
(BankStatement.is_active == True)

)

transaction.update (
BankStatement (user_id="user2'),
actions=[BankStatement.account_balance.add (transfer_amount)],
condition=(BankStatement.is_active == True)

(continues on next page)

26 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ClientRequestToken
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ReturnConsumedCapacity
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ReturnItemCollectionMetrics
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#DDB-TransactWriteItems-request-ReturnItemCollectionMetrics

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

userl_statement.refresh ()
user2_statement .refresh ()

assert userl_statement.account_balance == 1000
assert user2_statement.account_balance == 1000

Now, say you make another attempt to debit one of the accounts when they don’t have enough money in the bank:

from pynamodb.exceptions import TransactWriteError

assert userl_statement.account_balance == 1000
assert user2_statement.account_balance == 1000
try:

with TransactWrite (connection=connection, client_request_token='another-super—
—unique-key') as transaction:
attempting to transfer funds from userl's account to user2's
transfer_amount = 2000
transaction.update (
BankStatement (user_id='userl'),
actions=[BankStatement.account_balance.add (transfer_amount = -1)7,

condition=(
(BankStatement .account_balance >= transfer_amount) &
(BankStatement.is_active == True)

)
transaction.update (
BankStatement (user_id="user2'),
actions=[BankStatement.account_balance.add(transfer_amount)],
condition=(BankStatement.is_active == True)
)
except TransactWriteError as e:
Because the condition check on the account balance failed,
the entire transaction should be cancelled

assert e.cause_response_code == 'TransactionCanceledException'
the first 'update' was a reason for the cancellation
assert e.cancellation_reasons[0].code == 'ConditionalCheckFailed'

the second 'update' wasn't a reason, but was cancelled too
assert e.cancellation_reasons[1l] is None

userl_statement.refresh ()
user?2_statement.refresh ()

and both models should be unchanged

assert userl_statement.account_balance == 1000
assert user2_statement.account_balance == 1000

2.9. Transaction Operations

27

PynamoDB Documentation, Release 5.5.0

Condition Check

The ConditionCheck operation is used on a TransactWrite to check if the current state of a record you aren’t
modifying within the overall transaction fits some criteria that, if it fails, would cause the entire transaction to fail. The
condition argument is of type Conditional Operations.

* model_cls (required)
* hash_key (required)
* range_key (optional)

* condition (required) - of type Condition (see Conditional Operations)

with TransactWrite (connection=connection) as transaction:
transaction.condition_check (BankStatement, 'userl', condition=(BankStatement.is_
—active == True))

Delete

The Delete operation functions similarly to Model.delete.
* model (required)

e condition (optional) - of type Condition (see Conditional Operations)

statement = BankStatement.get ('userl')

with TransactWrite (connection=connection) as transaction:
transaction.delete (statement, condition=(~BankStatement.is_active))

Save

The Put operation functions similarly to Model . save.
* model (required)
e condition (optional) - of type Condition (see Conditional Operations)

e return_values (optional) - the values that should be returned if the condition fails ((see Put ReturnVal-
uesOnConditionCheckFailure in the DynamoDB API reference)

statement = BankStatement (user_id='user3', account_balance=20, is_active=True)

with TransactWrite (connection=connection) as transaction:
transaction.save (statement, condition=(BankStatement.user_id.does_not_exist()))

28 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Put.html#DDB-Type-Put-ReturnValuesOnConditionCheckFailure
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Put.html#DDB-Type-Put-ReturnValuesOnConditionCheckFailure

PynamoDB Documentation, Release 5.5.0

Update

The Update operation functions similarly to Model .update.
* model (required)
e actions (required) - a list of type Action (see Update Expressions)
e condition (optional) - of type Condition (see Conditional Operations)

e return_values (optional) - the values that should be returned if the condition fails (see Update ReturnVal-
uesOnConditionCheckFailure in the DynamoDB API reference)

userl_statement = BankStatement ('userl')
with TransactWrite (connection=connection) as transaction:
transaction.update (
userl_statement,
actions=[BankStatement.account_balance.set (0), BankStatement.is_active.
—.set (False)]
condition=(BankStatement .user_id.exists())

2.9.2 Transact Gets

with TransactGet (connection=connection) as transaction:
"rroattempting to get records of users' bank statements
userl_statement_future = transaction.get (BankStatement, 'userl')
user2_statement_future = transaction.get (BankStatement, 'user2'")

mwn

userl_statement: BankStatement = userl_statement_future.get ()
user2_statement: BankStatement = user2_statement_future.get ()

The TransactGet operation currently only supports the Get method, which only takes the following parameters:
* model_cls (required)
* hash_key (required)
* range_key (optional)

The .get returns a class of type _ModelFuture that acts as a placeholder for the record until the transaction
completes.

To retrieve the resolved model, you say model_future.get(). Any attempt to access this model before the transaction is
complete will resultina TnvalidStateError.

2.9.3 Error Types

You can expect some new error types with transactions, such as:

* TransactWriteError - thrown when a TransactWWrite request returns a bad response (see the Trans-
actWriteltems Errors section in the DynamoDB API reference).

* TransactGetError - thrown when a TransactGet request returns a bad response (see the Transact-
Getltems Errors section in the DynamoDB API reference).

* InvalidStateError - thrown when an attempt is made to access data on a _ModelFuture before the
TransactGet request is completed.

2.9. Transaction Operations 29

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Update.html#DDB-Type-Update-ReturnValuesOnConditionCheckFailure\T1\textgreater {}
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Update.html#DDB-Type-Update-ReturnValuesOnConditionCheckFailure\T1\textgreater {}
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#API_TransactWriteItems_Errors
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#API_TransactWriteItems_Errors
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactGetItems.html#API_TransactGetItems_Errors
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactGetItems.html#API_TransactGetItems_Errors

PynamoDB Documentation, Release 5.5.0

2.10 Optimistic Locking

Optimistic Locking is a strategy for ensuring that your database writes are not overwritten by the writes of others.
With optimistic locking, each item has an attribute that acts as a version number. If you retrieve an item from a table,
the application records the version number of that item. You can update the item, but only if the version number on the
server side has not changed. If there is a version mismatch, it means that someone else has modified the item before
you did. The update attempt fails, because you have a stale version of the item. If this happens, you simply try again
by retrieving the item and then trying to update it. Optimistic locking prevents you from accidentally overwriting
changes that were made by others. It also prevents others from accidentally overwriting your changes.

Warning:

¢ Optimistic locking will not work properly if you use DynamoDB global tables as they use last-write-wins
for concurrent updates.

See also: DynamoDBMapper Documentation on Optimistic Locking.

2.10.1 Version Attribute

To enable optimistic locking for a table, add a VersionAttribute to your model definition. The presence of this
attribute will change the model’s behaviors:

* save () and update () would increment the version attribute every time the model is persisted. This allows
concurrent updates not to overwrite each other, at the expense of the latter update failing.

e save (), update () and delete () would fail if they are the “latter update” (by adding to the update’s con-
ditions). This behavior is optional since sometimes a more granular approach can be desired (see Conditioning
on the version).

class OfficeEmployeeMap (MapAttribute) :
office_employee_id = UnicodeAttribute ()
person = UnicodeAttribute ()

def _ _eqg (self, other):
return isinstance (other, OfficeEmployeeMap) and self.person == other.person

def _ repr__ (self):

return str (vars(self))

class Office (Model) :
class Meta:

read_capacity_units = 1
write_capacity_units = 1
table_name = 'Office'

host = "http://localhost:8000"

office_id = UnicodeAttribute (hash_key=True)
employees = ListAttribute (of=0fficeEmployeeMap)
name = UnicodeAttribute ()

version = VersionAttribute ()

The attribute is underpinned by an integer which is initialized with 1 when an item is saved for the first time and is
incremented by 1 with each subsequent write operation.

30 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html

PynamoDB Documentation, Release 5.5.0

justin = OfficeEmployeeMap (office_employee_id=str (uuid4 ()), person='Jjustin')
garrett = OfficeEmployeeMap (office_employee_id=str(uuid4()), person='garrett')
office = Office(office_id=str(uuid4()), name="office", employees=[justin, garrett])
office.save ()

assert office.version == 1

Get a second local copy of Office
office_out_of_date = Office.get (office.office_id)

Add another employee and persist the change.
office.employees.append (OfficeEmployeeMap (office_employee_id=str (uuid4 ()), person=
—'lita'"))

office.save ()

On subsequent save or update operations the version is also incremented locally to,
—match the persisted value so

there's no need to refresh between operations when reusing the local copy.

assert office.version ==

assert office_out_of_date.version == 1

The version checking is implemented using DynamoDB conditional write constraints, asserting that no value exists
for the version attribute on the initial save and that the persisted value matches the local value on subsequent writes.

2.10.2 Model.{update, save, delete}

These operations will fail if the local object is out-of-date.

@contextmanager
def assert_condition_check_fails():
try:
yield
except (PutError, UpdateError, DeleteError) as e:
assert isinstance(e.cause, ClientError)
assert e.cause_response_code == "ConditionalCheckFailedException"
except TransactWriteError as e:
assert isinstance(e.cause, ClientError)
assert e.cause_response_code == "TransactionCanceledException"
assert any(r.code == "ConditionalCheckFailed" for r in e.cancellation_reasons)
else:
raise AssertionError ("The version attribute conditional check should have_
—~failed.")

with assert_condition_check_fails() :
office_out_of_date.update (actions=[0Office.name.set ('new office name')])

office_out_of_date.employees.remove (garrett)
with assert_condition_check_fails () :
office_out_of_date.save ()

After refreshing the local copy our write operations succeed.
office_out_of_date.refresh ()
office_out_of_date.employees.remove (garrett)

office_out_of_ date.save ()

assert office_out_of_date.version ==

with assert_condition_check_fails():

(continues on next page)

2.10. Optimistic Locking 31

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

office.delete ()

2.10.3 Conditioning on the version

To have save (), update () or delete () execute even if the item was changed by someone else, pass the
add_version_condition=False parameter. In this mode, updates would perform unconditionally but would
still increment the version: in other words, you could make other updates fail, but your update will succeed.

Done indiscriminately, this would be unsafe, but can be useful in certain scenarios:
1. For save, this is almost always unsafe and undesirable.

2. For update, use it when updating attributes for which a “last write wins” approach is acceptable, or if you're
otherwise conditioning the update in a way that is more domain-specific.

3. For delete, use it to delete the item regardless of its contents.

For example, if your save operation experiences frequent “ConditionalCheckFailedException” failures, rewrite your
code to call update with individual attributes while passing add_version_condition=False. By disabling
the version condition, you could no longer rely on the checks you’ve done prior to the modification (due to what
is known as the “time-of-check to time-of-use” problem). Therefore, consider adding domain-specific conditions to
ensure the item in the table is in the expected state prior to the update.

For example, let’s consider a hotel room-booking service with the conventional constraint that only one person can
book a room at a time. We can switch from a save to an update by specifying the individual attributes and rewriting
the if statement as a condition:

- 1f room.booked_by:

- raise Exception("Room is already booked")
- room.booked_by = user_id

— room.save ()

+ room.update (

+ actions=[Room.booked_by.set (user_id)],

+ condition=Room.booked_by.does_not_exist (),
+ add_version_condition=False,

+

2.10.4 Transactions

Transactions are supported.

Successful

connection = Connection (host='http://localhost:8000")

office2 = Office(office_id=str(uuid4()), name="second office", employees=[justin])
office2.save ()

assert office2.version == 1

office3 = Office(office_id=str(uuid4()), name="third office", employees=[garrett])

office3.save ()
assert office3.version ==

with TransactWrite (connection=connection) as transaction:

(continues on next page)

32 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

transaction.condition_check (Office, office.office_id, condition=(0Office.name.
—exists()))
transaction.delete (office2)
transaction.save (Office(office_id=str (uuid4()), name="new office",
—employees=[justin, garrett]))
transaction.update (
office3,
actions=[
Office.name.set ('birdistheword'"),

try:
office2.refresh()
except DoesNotExist:
pass
else:
raise AssertionError (
'Office with office_id="{}" should have been deleted in the transaction.
.format (office2.o0ffice_id)

v

assert office.version ==
assert office3.version ==

Failed

with assert_condition_check_fails (), TransactWrite (connection=connection) as_
—transaction:
transaction.save (Office(office.office_id, name='newer name', employees=[]))

with assert_condition_check_fails (), TransactWrite (connection=connection) as_
—transaction:
transaction.update (
Office(office.office_id, name='newer name', employees=[]),
actions=[0ffice.name.set ('Newer Office Name')]

with assert_condition_check_fails (), TransactWrite (connection=connection) as_
—transaction:
transaction.delete (Office (office.office_id, name='newer name', employees=[]))

2.10. Optimistic Locking 33

PynamoDB Documentation, Release 5.5.0

2.10.5 Batch Operations

Unsupported as they do not support conditional writes.

2.11 Rate-Limited Operation

Scan, Query and Count operations can be rate-limited based on the consumed capacities returned from DynamoDB.

Simply specify the rate_limit argument when calling these methods. Rate limited batch writes are not
supported, but if you would like to see it in a future version, please add a feature request for it in Issues.

currently

Note: Rate-limiting is only meant to slow operations down to conform to capacity limitations. Rate-limiting can not
be used to speed operations up. Specifying a higher rate-limit that exceeds the possible writing speed allowed by the

environment, will not have any effect.

2.11.1 Example Usage

Suppose that you have defined a User Model for the examples below.

from pynamodb.models import Model

from pynamodb.attributes import (
UnicodeAttribute

)

class User (Model) :
class Meta:
table_name = 'Users'

id = UnicodeAttribute (hash_key=True)
name = UnicodeAttribute (range_key=True)

Here is an example using rate-limit in while scaning the User model

Using only 5 RCU per second
for user in User.scan(rate_limit=5):
print ("User id: , hame: ".format (user.id, user.name))

2.11.2 Query

You can use rate-limit when querying items from your table:

Using only 15 RCU per second
for user in User.query('idl', User.name.startswith('re'), rate_limit = 15):
print ("Query returned user ".format (user))

34 Chapter 2

. Topics

PynamoDB Documentation, Release 5.5.0

2.11.3 Count

You can use rate-limit when counting items in your table:

Using only 15 RCU per second
count = User.count (rate_limit=15)
print ("Count : ".format (count))

2.12 Use PynamoDB Locally

Several DynamoDB compatible servers have been written for testing and debugging purposes. PynamoDB can be
used with any server that provides the same API as DynamoDB.

PynamoDB has been tested with two DynamoDB compatible servers, DynamoDB Local and dynalite.

To use a local server, you need to set the host attribute on your Mode1’s Meta class to the hostname and port that
your server is listening on.

Note: Local implementations of DynamoDB such as DynamoDB Local or dynalite may not be fully featured (and I
don’t maintain either of those packages), so you may encounter errors or bugs with a local implementation that you
would not encounter using DynamoDB.

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread (Model) :
class Meta:
table_name = "Thread"
host = "http://localhost:8000"
forum_name = UnicodeAttribute (hash_key=True)

2.12.1 Running dynalite

Make sure you have the Node Package Manager installed (see npm instructions).

Install dynalite:

’$ npm install -g dynalite

Run dynalite:

’$ dynalite --port 8000

That’s it, you’ve got a DynamoDB compatible server running on port 8000.

2.12. Use PynamoDB Locally 35

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html
https://github.com/mhart/dynalite
https://www.npmjs.org/doc/README.html

PynamoDB Documentation, Release 5.5.0

2.12.2 Running DynamoDB Local

DynamoDB local is a tool provided by Amazon that mocks the DynamoDB API, and uses a local file to store your data.
You can use DynamoDB local with PynamoDB for testing, debugging, or offline development. For more information,
you can read Amazon’s Announcement and Jeff Barr’s blog post about it.

* Download the latest version of DynamoDB local.
» Unpack the contents of the archive into a directory of your choice.
DynamoDB local requires the Java Runtime Environment version 7. Make sure the JRE is installed before continuing.

From the directory where you unpacked DynamoDB local, you can launch it like this:

$ java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar

Once the server has started, you should see output:

$ java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar

2014-03-28 12:09:10.892:INFO:0ejs.Server:jetty-8.1.12.v20130726

2014-03-28 12:09:10.943:INFO:0ejs.AbstractConnector:Started SelectChannelConnector@0.
—0.0.0:8000

Now DynamoDB local is running locally, listening on port 8000 by default.

2.13 Signals

Starting with PynamoDB 3.1.0, there is support for signalling. This support is provided by the blinker library, which
is not installed by default. In order to ensure blinker is installed, specify your PynamoDB requirement like so:

’pynamodb[signals]::<YOUR VERSION NUMBER>

Signals allow certain senders to notify subscribers that something happened. PynamoDB currently sends signals before
and after every DynamoDB API call.

Note: It is recommended to avoid business logic in signal callbacks, as this can have performance implications. To
reinforce this, only the operation name and table name are available in the signal callback.

2.13.1 Subscribing to Signals

PynamoDB fires two signal calls, pre_dynamodb_send before the network call and post_dynamodb_send after the
network call to DynamoDB.

The callback must taking the following arguments:

Arguments Description

sender The object that fired that method.

operation_name | The string name of the DynamoDB action

table_name The name of the table the operation is called upon.

req_uuid A unique identifer so subscribers can correlate the before and after events.

To subscribe to a signal, the user needs to import the signal object and connect your callback, like so.

36 Chapter 2. Topics

http://aws.amazon.com/about-aws/whats-new/2013/09/12/amazon-dynamodb-local/
http://aws.typepad.com/aws/2013/09/dynamodb-local-for-desktop-development.html
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest
http://java.com/en/
https://pypi.python.org/pypi/blinker

PynamoDB Documentation, Release 5.5.0

from pynamodb.signals import pre_dynamodb_send, post_dynamodb_send

def record_pre_dynamodb_send(sender, operation_name, table_name, reqg_uuid):
pre_recorded.append ((operation_name, table_name, req_ uuid))

def record_post_dynamodb_send(sender, operation_name, table_name, req_uuid):
post_recorded.append ((operation_name, table_name, reg uuid))

pre_dynamodb_send.connect (record_pre_dynamodb_send)
post_dynamodb_send.connect (record_post_dynamodb_send)

2.14 PynamoDB Examples

A directory of examples is available with the PynamoDB source on GitHub. The examples are configured to use
http://localhost:8000 as the DynamoDB endpoint. For information on how to run DynamoDB locally, see
Use PynamoDB Locally.

Note: You should read the examples before executing them. They are configured to use http://
localhost : 8000 by default, so that you can run them without actually consuming DynamoDB resources on AWS,
and therefore not costing you any money.

2.14.1 Install PynamoDB

Although you can install & run PynamoDB from GitHub, it’s best to use a released version from PyPI:

$ pip install pynamodb

2.14.2 Getting the examples

You can clone the PynamoDB repository to get the examples:

$ git clone https://github.com/pynamodb/PynamoDB.git

2.14.3 Running the examples

Go into the examples directory:

$ cd pynamodb/examples

2.14. PynamoDB Examples 37

https://github.com/pynamodb/PynamoDB/tree/master/examples

PynamoDB Documentation, Release 5.5.0

2.14.4 Configuring the examples

Each example is configured to use http://localhost : 8000 as the DynamoDB endpoint. You’ll need to edit an
example and either remove the host setting (causing PynamoDB to use a default), or specify your own.

2.14.5 Running an example

Each example file can be executed as a script by a Python interpreter:

’$ python model.py

2.15 Settings

2.15.1 Settings reference

Here is a complete list of settings which control default PynamoDB behavior.

connect_timeout_seconds

Default: 15

The time in seconds till a ConnectTimeoutError is thrown when attempting to make a connection.
read_timeout_seconds

Default: 30

The time in seconds till a ReadTimeoutError is thrown when attempting to read from a connection.

max_retry_attempts

Default: 3

The number of times to retry certain failed DynamoDB API calls. The most common cases eligible for retries include
ProvisionedThroughputExceededException and 5xx errors.

base backoff ms

Default: 25

The base number of milliseconds used for exponential backoff and jitter on retries.

38 Chapter 2. Topics

https://www.awsarchitectureblog.com/2015/03/backoff.html

PynamoDB Documentation, Release 5.5.0

region

Default: "us-east-1"

The default AWS region to connect to.

max_pool_connections

Default: 10

The maximum number of connections to keep in a connection pool.
extra_headers

Default: None

A dictionary of headers that should be added to every request. This is only useful when interfacing with DynamoDB
through a proxy, where headers are stripped by the proxy before forwarding along. Failure to strip these headers before
sending to AWS will result in an InvalidSignatureException due to request signing.

2.15.2 Overriding settings

Default settings may be overridden by providing a Python module which exports the desired new values. Set the
PYNAMODB_CONF IG environment variable to an absolute path to this module or write it to /etc/pynamodb/
global_default_settings.py to have it automatically discovered.

2.16 Low Level API

PynamoDB was designed with high level features in mind, but includes a fully featured low level API. Any operation
can be performed with the low level API, and the higher level PynamoDB features were all written on top of it.

2.16.1 Creating a connection

Creating a connection is simple:

from pynamodb.connection import Connection

conn = Connection ()

You can specify a different DynamoDB url:

’conn = Connection (host="http://alternative-domain/")

By default, PynamoDB will connect to the us-east-1 region, but you can specify a different one.

’conn = Connection(region='us-west-1")

2.16. Low Level API 39

PynamoDB Documentation, Release 5.5.0

2.16.2 Modifying tables

You can easily list tables:

>>> conn.list_tables|()
{u'TableNames': [u'Thread']}

or delete a table:

’>>> conn.delete_table ('Thread'") ‘

If you want to change the capacity of a table, that can be done as well:

’>>> conn.update_table ('Thread', read_capacity_units=20, write_capacity_units=20) ‘

You can create tables as well, although the syntax is verbose. You should really use the model API instead, but here is
a low level example to demonstrate the point:

kwargs = {
'write_capacity_units': 1,
'read_capacity_units': 1
'attribute_definitions': [
{
'attribute_type': 'S',
'attribute_name': 'keyl'
}I
{
'attribute_type': 'S',
'attribute_name': 'key2'

1,

'key_schema': [

{

'key_type': 'HASH',
'attribute_name': 'keyl'
br
{
'key_type': 'RANGE',
'attribute_name': 'key2'

}

conn.create_table('table_name', =xxkwargs)

You can also use update_table to change the Provisioned Throughput capacity of Global Secondary Indexes:

>>> kwargs = {
'global_secondary_index_updates': [

{

'index_name': 'index_name',
'read_capacity_units': 10,
'write_capacity_units': 10

}

>>> conn.update_table('table _name', xxkwargs)

40 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.16.3 Modifying items

The low level API can perform item operations too, such as getting an item:

’conn.get_item('table_name’, 'hash_key', 'range_key'")

You can put items as well, specifying the keys and any other attributes:

’conn.put_item('table_name’, 'hash_key', 'range_key', attributes={'key': 'value'})

Deleting an item has similar syntax:

’conn.delete_item('table_name', 'hash_key', 'range_key')

2.17 AWS Access

PynamoDB uses botocore to interact with the DynamoDB API. Thus, any method of configuration sup-
ported by botocore works with PynamoDB. For local development the use of environment variables such as
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY is probably preferable. You can of course use IAM users,
as recommended by AWS. In addition EC2 roles will work as well and would be recommended when running on EC2.

As for the permissions granted via IAM, many tasks can be carried out by PynamoDB. So you should construct your
policies as required, see the DynamoDB docs for more information.

If for some reason you can’t use conventional AWS configuration methods, you can set the credentials in the Model
Meta class:

from pynamodb.models import Model

class MyModel (Model) :
class Meta:

aws_access_key_id = 'my_access_key_id'
aws_secret_access_key = 'my_secret_access_key'
aws_session_token = 'my_session_token' # Optional, only for temporary,,

—credentials like those received when assuming a role

Finally, see the AWS CLI documentation for more details on how to pass credentials to botocore.

2.18 Logging

Logging in PynamoDB uses the standard Python logging facilities. PynamoDB is built on top of bot ocore which
also uses standard Python logging facilities. Logging is quite verbose, so you may only wish to enable it for debugging
purposes.

Here is an example showing how to enable logging for PynamoDB:

import logging

from pynamodb.models import Model

from pynamodb.attributes import (
UnicodeAttribute, NumberAttribute

)

logging.basicConfig ()

(continues on next page)

2.17. AWS Access 41

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-installing-credentials

PynamoDB Documentation, Release 5.5.0

(continued from previous page)

log = logging.getLogger ("pynamodb")
log.setLevel (logging.DEBUG)
log.propagate = True

class Thread (Model) :
class Meta:
table_name = 'Thread'

forum_name = UnicodeAttribute (hash_key=True)
subject = UnicodeAttribute (range_key=True)
views = NumberAttribute (default=0)

Scan
for item in Thread.scan() :
print (item)

2.19 Contributing

Pull requests are welcome, forking from the master branch. If you are new to GitHub, be sure and check out
GitHub’s Hello World tutorial.

2.19.1 Environment Setup

You’ll need a python3 installation and a virtualenv. There are many ways to manage virtualenvs, but a minimal
example is shown below.

$ virtualenv -p python3 venv && source venv/bin/activate
$ pip install -e .[signals] -r requirements-dev.txt

A java runtime is required to run the integration tests. After installing java, download and untar the mock dynamodb
server like so:

$ wget -—-quiet http://dynamodb-local.s3-website-us-west—-2.amazonaws.com/dynamodb_
—local_latest.tar.gz -0 /tmp/dynamodb_local_latest.tar.gz
$ tar -xzf /tmp/dynamodb_local_latest.tar.gz -C /tmp

Note that you may want to place files somewhere other than /tmp.

2.19.2 Running Tests

After installing requirements in environment setup and ensuring your venv is activated, unit tests are run with:

$ pytest tests/ -k "not ddblocal"

There are also a set of integration tests that require a local dynamodb server to be mocked.

$ java -Djava.library.path=/tmp/DynamoDBLocal_lib -jar /tmp/DynamoDBLocal.jar -
—inMemory -port 8000
$ pytest tests/ # in another window

42 Chapter 2. Topics

https://guides.github.com/activities/hello-world/

PynamoDB Documentation, Release 5.5.0

2.19.3 Backwards Compatibility

Particular care should be paid to backwards compatibility when making any change in PynamoDB, especially with
attributes and serialization/deserialization. Consider data written with an older version of the library and whether it
can still be read after upgrading.

Where possible, write logic to continue supporting older data for at least one major version to simplify the upgrade
path. Where that’s not possible, create a new version of the attribute with a different name and mark the old one as
deprecated.

Outside of data compatibility, follow the usual semver rules for API changes and limit breaking changes to a major
release.

2.19.4 The Scope of the Library

The purpose of this library is to provide a Pythonic ODM layer on top of DynamoDB to be used in server applications’
runtime, i.e. to enable their various application logic and features. While striving for the library to be useful, we’re
also trying to “do one thing well”. For this reason:

* Database administration tasks are out of scope, and while PynamoDB has functions for operations like Cre-
ateTable, CreateIndex and DeleteTable, it’s because they are useful for interacting with dynamodb-local and
moto’s DynamoDB backend from within test code.

For this reason, features such as enabling PITR backups, restoring from such backups, updating indices, etc. are
intentionally absent. For getting started and operating on a small scale, AWS Console and the AWS Command
Line Interface (awscli) can be used. For larger scale, infrastructure provisioning by dedicated tools (such as
CloudFormation or Terraform) would be vastly preferable over anything PynamoDB could offer.

Per security best practices, we recommend running your application’s runtime with an IAM role having the least
privileges necessary for it to function (which likely excludes any database administration operations).

* While the library aims to empower application developers, it steers away from high-level features which are
not specific to DynamoDB. For example, a custom attribute which serializes UUIDs as strings is doubtlessly
something many applications have had a need for, but as long as it doesn’t exercise any core DynamoDB func-
tionality (e.g. in the case of a UUID attribute, there isn’t a dedicated DynamoDB data type or API feature for
storing UUIDs), we would recommend relegating such functionality to auxillary libraries. One such library is
pynamodb-attributes.

2.19.5 Pull Requests

Pull requests should:
1. Specify an accurate title and detailed description of the change
Include thorough testing. Unit tests at a minimum, sometimes integration tests
Add test coverage for new code (CI will verify the delta)
Add type annotations to any code modified

Write documentation for new features

A o

Maintain the existing code style (mostly PEP8) and patterns

2.19. Contributing 43

https://github.com/lyft/pynamodb-attributes

PynamoDB Documentation, Release 5.5.0

2.19.6 Changelog

Any non-trivial change should be documented in the release notes. Please include sufficient detail in the PR descrip-
tion, which will be used by maintainers to populate the release notes.

2.19.7 Documentation

Docs are built using sphinx and available on readthedocs. A release of the latest tag (tracking master) happens auto-
matically on merge via a Github webhook.

2.20 Release Notes

2.20.1 v5.5.0

e save (), update (), delete_item(), and delete () now accept a add_version_condition pa-
rameter. See Conditioning on the version for more details.

2.20.2 v5.4.1

¢ Use model’s AWS credentials in threads (#1164)

A model can specify custom AWS credentials in the Meta class (in lieu of “global” AWS credentials from the
environment). Previously those model-specific credentials were not used from within new threads.

Contributors to this release:

¢ @atsuoishimoto

2.20.3 v5.4.0

* Expose transaction cancellation reasons in cancellation_reasons () and
cancellation_reasons () (#1144).

2.20.4 v5.3.5

* Fix message of some exceptions derived from PynamoDBException (#1113).
Contributors to this release:

e @pauliokas

44 Chapter 2. Topics

https://pynamodb.readthedocs.io/en/latest/release_notes.html
https://www.sphinx-doc.org/en/1.5.1/
https://pynamodb.readthedocs.io/

PynamoDB Documentation, Release 5.5.0

2.20.5 v5.3.4

* Make serialization null_check=False propagate to maps inside lists (#1128).

2.20.6 v5.3.3
e Fix PageIterator and ResultIterator to allow recovery from an exception when retrieving the first
item (#1101).
results = MyModel.query ('hash_key")
while True:
try:
item = next (results)
except Stoplteration:
break
except pynamodb.exceptions.QueryError as ex:
if ex.cause_response_code == 'ThrottlingException':
time.sleep(l) # for illustration purposes only
else:
raise
else:
handle_item (item)

2.20.7 v5.3.2

* Prevent typing_tests from being installed into site-packages (#1118)

Contributors to this release:

¢ @musicinmybrain

2.20.8 v5.3.1
* Fixed issue introduced in 5.3.0: using TableConnect ion directly (not through a model) raised the following
exception:
pynamodb.exceptions.TableError: Meta-table for ' (table-name)' not initialized

* Fix typing on TransactGet (backport of #1057)

2.20.9 v5.3.0

* No longer call DescribeTable API before first operation

Before this change, we would call DescribeTable before the first operation on a given table in order to
discover its schema. This slowed down bootstrap (particularly important for lambdas), complicated testing and

could potentially cause inconsistent behavior since queries were serialized using the table’s (key) schema but
deserialized using the model’s schema.

With this change, both queries and models now use the model’s schema.

2.20. Release Notes 45

PynamoDB Documentation, Release 5.5.0

2.20.10 v5.2.3

» Update for botocore 1.28 private API change (#1087) which caused the following exception:

TypeError: Cannot mix str and non-str arguments

2.20.11 v5.2.2

» Update for botocore 1.28 private API change (#1083) which caused the following exception:

TypeError: _convert_to_request_dict () missing 1 required positional argument:
—'endpoint_url'

2.20.12 v5.2.1

* Fix issue from 5.2.0 with attempting to set GSI provisioned throughput on PAY_PER_REQUEST billing mode
(#1018)

2.20.13 v5.2.0

* The IndexMeta class has been removed. Now type (Index) == type (#998)
* JSON serialization support (Model.to_json and Model . from_Jjson) has been added (#857)
* Improved type annotations for expressions and transactions (#951, #991)

» Always use Model attribute definitions in create table schema (#996)

2.20.14 v5.1.0

date 2021-06-29
¢ Introduce DynamicMapAttribute to enable partially defining attributes on a MapAttribute (#868)
* Quality of life improvements: Type annotations, better comment, more resilient test (#934, #936, #948)
* Fix type annotation of is_1in conditional expression (#947)
 Null errors should include full attribute path (#915)

* Fix for serializing and deserializing dates prior to year 1000 (#949)

2.20.15 v5.0.3

date 2021-02-14

* Propagate Model.serialize’s null_check parameter to nested MapAttributes (#908)

46 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.20.16 v5.0.2

date 2021-02-11

* Do not serialize all attributes for updates and deletes (#905)

2.20.17 v5.0.1

date 2021-02-10

* Fix type errors when deriving from a MapAttribute and another type (#904)

2.20.18 v5.0.0

date 2021-01-26
This is major release and contains breaking changes. Please read the notes below carefully.
Polymorphism

This release introduces Polymorphism support via DiscriminatorAttribute. Discriminator values are written
to DynamoDB and used during deserialization to instantiate the desired class.

UTCDateTimeA ttribute

The UTCDateTimeAttribute now strictly requires the date string format ‘% Y-%m-%dT%H:%M:%S.%f%z’ to ensure
proper ordering. PynamoDB has always written values with this format but previously would accept reading other
formats. Items written using other formats must be rewritten before upgrading.

UnicodeAttribute and BinaryAttribute

In previous versions, assigning an empty value to a UnicodeAttribute or BinaryAttribute would be akin
to assigning None: if the attribute was defined with nul1l=True then it would be omitted, otherwise an error would
be raised.

As of May 2020, DynamoDB supports empty values for String and Binary attributes. This release of PynamoDB starts
treating empty values like any other values. If existing code unintentionally assigns empty values to StringAttribute or
BinaryAttribute, this may be a breaking change: for example, the code may rely on the fact that in previous versions
empty strings would be “read back” as None values when reloaded from the database.

Model Serialization

THe Model class now includes public methods for serializing and deserializing its attributes. Model.serialize
and Model.deserialize convert the model to/from a dictionary of DynamoDB attribute values.

Other changes in this release:
 Python 2 is no longer supported. Python 3.6 or greater is now required.
* Table backup functionality (Model .dump [s] and Model . load[s]) has been removed.

* Model.query no longer demotes invalid range key conditions to be filter conditions to avoid surprising be-
haviors: where what’s intended to be a cheap and fast condition ends up being expensive and slow. Since
filter conditions cannot contain range keys, this had limited utility to begin with, and would sometimes cause
confusing “‘filter_condition’ cannot contain key attributes” errors.

* Replace the internal attribute type constants with their “short” DynamoDB version (#827)
» Typed list attributes can now support any Attribute subclass (#833)

* Add support for empty values in Binary and String attributes (#830)

2.20. Release Notes 47

https://aws.amazon.com/about-aws/whats-new/2020/05/amazon-dynamodb-now-supports-empty-values-for-non-key-string-and-binary-attributes-in-dynamodb-tables/

PynamoDB Documentation, Release 5.5.0

* Most API operation methods now accept a settings argument to customize settings of individual operations.
This currently allow adding or overriding HTTP headers. (#887)

* Remove ListAttribute.remove_indexes (added in v4.3.2) and document usage of remove for list
elements (#838)

* Add the attribute name to error messages when deserialization fails (#815)
* Add the table name to error messages for transactional operations (#835)
e Remove pynamodb.connection.util.pythonic (#753) and (#865)
¢ Remove ModelContextManager class (#861)
Contributors to this release:
* @jpinner
* @ikonst
e @rchilaka-amzn

* @jonathantan

2.20.19 v4.3.3

* Add type stubs for indexing into a ListAttribute for forming conditional expressions (#774)

class MyModel (Model) :

my_list = ListAttribute()

MyModel.query (..., condition=MyModel.my_list[0] == 42)

* Fix a warning about collections.abc deprecation (#782)

2.20.20 v4.3.2

* Fix discrepancy between runtime and type-checker’s perspective of Index and derived types (#769)

* Add ListAttribute.remove_indexes action for removing specific indexes from a ListAttribute
(#754)

* Type stub fixes:
— Add missing parameters of Model . scan (#750)
— Change Model .get’s hash_key parameter to be typed Any (#756)
 Prevent integration tests from being packaged (#758)
¢ Various documentation fixes (#762, #765, #766)
Contributors to this release:
* @mxr
* @sodre
* @biniow
e @MartinAltmayer

e @dotpmrcunha

48 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

@meawoppl

2.20.21 v4.3.1

* Fix Index.query and Index.scan typing regressions introduced in 4.2.0, which were causing false errors in type

checkers

2.20.22 v4.3.0

Implement exponential backoff for batch writes (#728)
Avoid passing ‘PROVISIONED’ BillingMode for compatibility with some AWS AZs (#721)
On Python >= 3.3, use importlib instead of deprecated imp (#723)

Update in-memory object correctly on REMOVE update expressions (#741)

Contributors to this release:

@hallie
@bit-bot-bit
@edholland
@reginalin
@MichelML
@timgates42
@sunaoka

@conjmurph

2.20.23 v4.2.0

date 2019-10-17

This is a backwards compatible, minor release.

Add attributes_to_get parameter to Model . scan (#431)

Disable botocore parameter validation for performance (#711)

Contributors to this release:

@ButtaKnife

2.20.24 v4.1.0

date 2019-10-17

This is a backwards compatible, minor release.

¢ In the Model’s Meta, you may now provide an AWS session token, which is mostly useful for assumed roles

(#700):

2.20.

Release Notes

49

PynamoDB Documentation, Release 5.5.0

sts_client = boto3.client ("sts")

role_object = sts_client.assume_role (RoleArn=role_arn, RoleSessionName="role_name
—", DurationSeconds=BOTO3_CLIENT_DURATION)

role_credentials = role_object["Credentials"]

class MyModel (Model) :
class Meta:

table_name = "table_name"

aws_access_key_id = role_credentials["AccessKeyId"]
aws_secret_access_key = role_credentials["SecretAccessKey"]
aws_session_token = role_credentials["SessionToken"]

hash = UnicodeAttribute (hash_key=True)
range = UnicodeAttribute (range_key=True)

* Fix warning about inspect.getargspec (#701)

* Fix provisioning GSIs when using pay-per-request billing (#690)

* Suppress Python 3 exception chaining when “re-raising” botocore errors as PynamoDB model exceptions (#705)
Contributors to this release:

e @asottile

e @julienduchesne

2.20.25 v4.0.0

date 2019-04-10
This is major release and contains breaking changes. Please read the notes below carefully.
Requests Removal

Given that botocore has moved to using ur11ib3 directly for making HTTP requests, we’ll be doing the same
(viabotocore). This means the following:

* The session_cls option is no longer supported.

e The request_timeout_seconds parameter is no longer supported. connect_timeout_seconds
and read_timeout_seconds are available instead.

— Note that the timeouts for connection and read are now 15 and 30 seconds respectively. This represents a
change from the previous 60 second combined requests timeout.

* Wrapped exceptions (i.e exc.cause) that were from requests.exceptions will now be comparable
ones from botocore.exceptions instead.

Key attribute types must match table

The previous release would call DescribeTable to discover table metadata and would use the key types as defined in the
DynamoDB table. This could obscure type mismatches e.g. where a table’s hash key is a number () in DynamoDB,
but defined in PynamoDB as a UnicodeAttribute.

With this release, we’re always using the PynamoDB model’s definition of all attributes including the key attributes.
Deprecation of old APIs
Support for Legacy Conditional Parameters has been removed. See a complete list of affected Mode 1 methods below:

e update_item: removed in favor of update.

50 Chapter 2. Topics

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html

PynamoDB Documentation, Release 5.5.0

e rate_limited_scan: removed in favor of scan and ResultIterator.

— Relatedly, the allow_rate_limited_scan_without_consumed_capacity option has been
removed.

e delete: conditional_operator and x+expected_values kwargs removed. Use condition in-
stead.

* update: attributes, conditional_operator and x+expected_values kwargs removed. Use
actions and condition instead.

* save: conditional_operator and »xexpected_values kwargs removed. Use condition in-
stead.

e count: xxfilters kwargs removed. Use range_key_condition/filter_condition instead.

* query: conditional_operator and xxfilters kwargs removed. Use
range_key_condition/filter_condition instead.

e scan: conditional_operator and *xfilters kwargs removed. Use filter_condition instead.

When upgrading, pay special attention to use of x*filters and x+expected_values, as you'll need to check
for arbitrary names that correspond to attribute names. Also keep an eye out for kwargs like user_id__eqg=5 or
email null=True, which are no longer supported. If you’re not already using mypy to type check your code, it
can help you catch cases like these.

New features in this release:
 Support for transactions (TransactGet and TransactWrite) (#618)
* Support for versioned optimistic locking (#664)

Other changes in this release:

* Python 2.6 is no longer supported. 4.x.x will be the last major release to support Python 2.7 given the upcoming
EOL.

* Added the max_pool_connection and extra_headers settings to replace common use cases for
session_cls

* Added support for moto through implementing the botocore “before-send” hook.
* Performance improvements to UTCDateTimeAttribute deserialization. (#610)

e The MapAttributeMeta class has been removed. Now type (MapAttribute) ==
AttributeContainerMeta.

* Removed LegacyBooleanAttribute and the read-compatibility for it in BooleanAttribute.
* None can now be used to bootstrap condition chaining (#653)

¢ Allow specifying timedeltas in expressions involving TTLAttributes (#665)

2.20.26 v3.4.1

date 2019-06-28
This is a backwards compatible, minor release.
Changes in this release:

* Fix type stubs to include new methods and parameters introduced with time-to-live support

2.20. Release Notes 51

https://github.com/spulec/moto

PynamoDB Documentation, Release 5.5.0

2.20.27 v3.4.0

date 2019-06-13
This is a backwards compatible, minor release.
Changes in this release:

* Adds a TTLAttribute that specifies when items expire (#259)

* Enables time-to-live on a DynamoDB table if the corresponding model has a TTLAttribute

* Adds a default_for_new parameter for Attribute which is a default that applies to new items only

Contributors to this release:
* @irhkang
¢ @ikonst

2.20.28 v3.3.3

date 2019-01-15
This is a backwards compatible, minor release.
Fixes in this release:
* Legacy boolean attribute migration fix. (#538)
» Correctly package type stubs. (#585)
Contributors to this release:

¢ @vo-va

2.20.29 v3.3.2

date 2019-01-03
This is a backwards compatible, minor release.
Changes in this release:

* Built-in support for mypy type stubs, superseding those in python/typeshed. (#537)

2.20.30 v3.3.1

date 2018-08-30
This is a backwards compatible, minor bug fix release.
Fixes in this release:
* Clearer error message on missing consumed capacity during rate-limited scan. (#506)
* Python 3 compatibility in Pagelterator. (#535)
* Proxy configuration changes in botocore>=1.11.0. (#531)
Contributors to this release:

¢ @ikonst

52

Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

@zetaben

@ningirsu

2.20.31 v3.3.0

This is a backwards compatible, major bug fix release.
New features in this release:

* Support scan operations on secondary indexes. (#141, #392)

date 2018-05-09

Support projections in model get function. (#337, #403)

Handle values from keys when batch get returns unprocessed keys. (#252, #376)

Externalizes AWS Credentials. (#426)

Add migration support for LegacyBooleanAttribute. (#404, #405)

Rate limited Page Iterator. (#481)

Fixes in this release:

* Add python 3.5 for Travis ci builds. (#437)

Contributors to this release:

Thread-safe client creation in botocore. (#153, #393)
Use attr.get_value(value) when deserialize. (#450)

Skip null attributes post serialization for maps. (#455)

Fix deserialization bug in BinaryAttribute and BinarySetAttribute. (#459, #480)

Allow MapAttribute instances to be used as the RHS in expressions. (#488)

Return the correct last_evaluated_key for limited queries/scans. (#4006, #410)

Fix exclusive_start_key getting lost in Pagelterator. (#421)

@jpinner-lyft
@scode
@behos
@jmphilli
@drewisme
@nicysneiros
@jcomo
@kevgliss
@asottile
@harleyk

@betamoo

2.20

. Release Notes

53

PynamoDB Documentation, Release 5.5.0

2.20.32 v3.2.1

date 2017-10-25
This is a backwards compatible, minor bug fix release.
Removed features in this release:
* Remove experimental Throttle api. (#378)
Fixes in this release:
» Handle attributes that cannot be retrieved by getattr. Fixes #104 (#385)
¢ Model.refresh() should reset all model attribuets. Fixes #166 (#388)

Model.loads() should deserialize using custom attribute names. Fixes #168 (#387)
* Deserialize hash key during table loads. Fixes #143 (#386)
* Support pagination in high-level api query and scan methods. Fixes #50, #118, #207, and #248 (#379)
¢ Don’t serialize null nested attributed. Fixes #240 and #309 (#375)
* Legacy update item subset removal using DELETE operator. Fixes #132 (#374)
Contributors to this release:

* @jpinner-lyft

2.20.33 v3.2.0

date 2017-10-13
This is a backwards compatible, minor release.

This release updates PynamoDB to interact with Dynamo via the current version of Dynamo’s API. Condition and
update expressions can now be created from attributes and used in model operations. Legacy filter and attribute update
keyword arguments have been deprecated. Using these arguments will cause a warning to be logged.

New features in this release:

* Add support for current version of DynamoDB API

e Improved MapAttribute item assignment and access.
Contributors to this release:

¢ @jpinner-lyft

2.20.34 v3.2.0rc2

date 2017-10-09
This is a backwards compatible, release candidate.

This release candidate allows dereferencing raw MapAttributes in condition expressions. It also improves
MapAttribute assignment and access.

Contributors to this release:

* @jpinner-lyft

54 Chapter 2. Topics

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Appendix.CurrentAPI.html

PynamoDB Documentation, Release 5.5.0

2.20.35 v3.2.0rc1

date 2017-09-22
This is a backwards compatible, release candidate.

This release candidate updates PynamoDB to interact with Dynamo via the current version of Dynamo’s API. It
deprecates some internal methods that were used to interact with Dynamo that are no longer relevant. If your project
was calling those low level methods a warning will be logged.

New features in this release:
* Add support for current version of DynamoDB API
Contributors to this release:

* @jpinner-lyft

2.20.36 v3.1.0

date 2017-07-07
This is a backwards compatible, minor release.

Note that we now require botocore>=1. 2. 0; this is required to support the consistent_read parameter when
scanning.

Calling Model. count () withouta hash_key and with filters will raise a ValueError, as it was previously
returning incorrect results.

New features in this release:
¢ Add support for signals via blinker (#278)
Fixes in this release:
* Pass batch parameters down to boto/dynamo (#308)
* Raise a ValueError if count() is invoked with no hash key AND filters (#313)
¢ Add consistent_read parameter to Model.scan (#311)
Contributors to this release:
* @jmphilli
¢ @Lordnibbler
o @lita

2.20.37 v3.0.1

date 2017-06-09
This is a major release with breaking changes.

MapAttribute now allows pythonic access when recursively defined. If you were not using the attr_name=
kwarg then you should have no problems upgrading. Previously defined non subclassed MapAttributes (raw
MapAttributes) that were members of a subclassed MapAttribute (typed MapAttributes) would have
to be accessed like a dictionary. Now object access is possible and recommended. See [here](https://github.
com/pynamodb/PynamoDB/blob/master/pynamodb/tests/test_attributes.py#L671) for a test example. Access via the
attr_name, also known as the DynamoDB name, will now throw an AttributeError.

2.20. Release Notes 55

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Appendix.CurrentAPI.html
https://github.com/pynamodb/PynamoDB/blob/master/pynamodb/tests/test_attributes.py#L671
https://github.com/pynamodb/PynamoDB/blob/master/pynamodb/tests/test_attributes.py#L671

PynamoDB Documentation, Release 5.5.0

UnicodeSetAttributes do not json serialize or deserialize anymore. We deprecated the functionality of json
serializing as of 1. 6.0 but left the deserialization functionality in there so people could migrate away from the old
functionality. If you have any UnicodeSetAttributes that have not been persisted since version 1.6.0 you
will need to migrate your data or manage the json encoding and decoding with a custom attribute in application.

¢ Performance enhancements for the UTCDateTimeAttribute deserialize method. (#277)

» There was a regression with attribute discovery. Fixes attribute discovery for model classes with inheritance
(#280)

* Fix to ignore null checks for batch delete (#283)

e Fix for ListAttribute and MapAttribute serialize (#286)

* Fix for MapAttribute pythonic access (#292) This is a breaking change.

* Deprecated the json decode in UnicodeSetAttribute (#294) This is a breaking change.

* Raise TableDoesNotExist error instead of letting json decoding ValueErrors raise (#296)
Contributors to this release:

* @jcbertin

* @johnliu

* @scode

* @rowilla

* @lita

* @garretheel

e @jmphilli

2.20.38 v2.2.0

date 2017-10-25
This is a backwards compatible, minor release.
The purpose of this release is to prepare users to upgrade to v3.0.1+ (see issue #377 for details).
Pull request #294 removes the backwards compatible deserialization of UnicodeSetAttributes introduced in #151.

This release introduces a migration function on the Model class to help re-serialize any data that was written with
v1.5.4 and below.

Temporary feature in this release:
* Model.fix_unicode_set_attributes() migration helper

* Model.needs_unicode_set_fix() migration helper

56 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.20.39 v2.1.6

date 2017-05-10

This is a backwards compatible, minor release.
Fixes in this release:

* Replace Delorean with dateutil (#208)

* Fix a bug with count — consume all pages in paginated response (#256)

» Update mock lib (#262)

» Use pytest instead of nose (#263)

* Documentation changes (#269)

* Fix null deserialization in MapAttributes (#272)
Contributors to this release:

e @funkybob

* @garrettheel

e @lita

* @jmphilli

2.20.40 v2.1.5

date 2017-03-16

This is a backwards compatible, minor release.
Fixes in this release:

* Apply retry to ProvisionedThroughputExceeded (#222)

* rate_limited_scan fix to handle consumed capacity (#235)

* Fix for test when dict ordering differs (#237)
Contributors to this release:

* @anandswaminathan

* @jasonfriedland

¢ @JohnEmbhoff

2.20.41 v2.1.4

date 2017-02-14

This is a minor release, with some changes to MapAttribute handling. Previously, when accessing a MapAttribute via
item.attr, the type of the object used during instantiation would determine the return value. Model(attr={... }) would
return a dict on access. Model(attr=MapAttribute(...)) would return an instance of MapAttribute. After #223, a
MapAttribute will always be returned during item access regardless of the type of the object used during instantiation.
For convenience, a dict version can be accessed using .as_dict() on the MapAttribute.

New features in this release:

 Support multiple attribute update (#194)

2.20. Release Notes 57

PynamoDB Documentation, Release 5.5.0

¢ Rate-limited scan (#205)

* Always create map attributes when setting a dict (#223)
Fixes in this release:

* Remove AttributeDict and require explicit attr names (#220)

* Add distinct DoesNotEXxist classes per model (#206)

* Ensure defaults are respected for MapAdttribute (#221)

¢ Add docs for GSI throughput changes (#224)
Contributors to this release:

* @anandswaminathan

* @garrettheel

¢ @ikonst

* @jasonfriedland

* @yedpodtrzitko

2.20.42 v2.0.3

date 2016-11-18
This is a backwards compatible, minor release.
Fixes in this release:
* Allow longs as members of maps + lists in python 2 (#200)
* Allow raw map attributes in subclassed map attributes (#199)
Contributors to this release:

* @jmphilli

2.20.43 v2.0.2

date 2016-11-10

This is a backwards compatible, minor release.
Fixes in this release:

¢ add BOOL into SHORT_ATTR_TYPES (#190)

* deserialize map attributes correctly (#192)

* prepare request with requests session so session properties are applied (#197)
Contributors to this release:

¢ @anandswaminathan

* @jmphilli

* @yedpodtrzitko

58

Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.20.44 v2.0.1

date 2016-11-04
This is a backwards compatible, minor release.
Fixes in this release:
* make “unprocessed keys for batch operation” log at info level (#180)
* fix RuntimeWarning during imp_load in custom settings file (#185)
* allow unstructured map attributes (#186)
Contributors to this release:
* @danielhochman
e @jmphilli
* @bedge

2.20.45 v2.0.0

date 2016-11-01

This is a major release, which introduces support for native DynamoDB maps and lists. There are no changes which
are expected to break backwards compatibility, but you should test extensively before upgrading in production due to
the volume of changes.

New features in this release:

* Add support for native map and list attributes (#175)
Contributors to this release:

* @jmphilli

* @berdim99

2.20.46 v1.6.0

date 2016-10-20
This is a minor release, with some changes to BinaryAttribute handling and new options for configuration.

BooleanAttribute now uses the native API type “B”. BooleanAttribute is also compatible with the legacy BooleanAt-
tributes on read. On save, they will be rewritten with the native type. If you wish to avoid this behavior, you can
continue to use LegacyBooleanAttribute. LegacyBooleanAttribute is also forward compatible with native boolean
attributes to allow for migration.

New features in this release:

* Add support for native boolean attributes (#149)

* Parse legacy and native bool in legacy bool (#158)

* Allow override of settings from global configuration file (#147)
Fixes in this release:

* Serialize UnicodeSetAttributes correctly (#151)

* Make update_item respect attr_name differences (#160)

2.20. Release Notes 59

PynamoDB Documentation, Release 5.5.0

Contributors to this release:
* @anandswaminathan
* @jmphilli
* @lita

2.20.47 v1.5.4

date 2017-10-25
This is a backwards compatible, minor bug fix release.
The purpose of this release is to prepare users to upgrade to v1.6.0+ (see issue #377 for details).

Pull request #151 introduces a backwards incompatible change to how UnicodeSetAttributes are serialized. While the
commit attempts to provide compatibility by deserializing values written with v1.5.3 and below, it prevents users from
upgrading because it starts writing non JSON-encoded values to dynamo.

Anyone using UnicodeSetAttribute must first deploy this version.
Fixes in this release:

* Backport UnicodeSetAttribute deserialization code from #151

2.20.48 v1.5.3

date 2016-08-08
This is a backwards compatible, minor release.
Fixes in this release:
* Introduce concept of page_size, separate from num items returned limit (#139)
Contributors to this release:

¢ @anandswaminathan

2.20.49 v1.5.2

date 2016-06-23
This is a backwards compatible, minor release.
Fixes in this release:
* Additional retry logic for HTTP Status Code 5xx, usually attributed to InternalServerError (#135)
Contributors to this release:

¢ @danielhochman

60 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.20.50 v1.5.1

date 2016-05-11
This is a backwards compatible, minor release.
Fixes in this release:
* Fix for binary attribute handling of unprocessed items data corruption affecting users of 1.5.0 (#126 fixes #125)
Contributors to this release:

¢ @danielhochman

2.20.51 v1.5.0

date 2016-05-09
This is a backwards compatible, minor release.
Please consider the fix for limits before upgrading. Correcting for off-by-one when querying is no longer necessary.
Fixes in this release:
* Fix off-by-one error for limits when querying (#123 fixed #95)
 Retry on ConnectionErrors and other types of RequestExceptions (#121 fixes #98)
* More verbose logging when receiving errors e.g. InternalServerError from the DynamoDB API (#115)
* Prevent permanent poisoning of credential cache due to botocore bug (#113 fixes #99)
* Fix for Unprocessedltems serialization error (#114 fixes #103)
* Fix parsing issue with newer version of dateutil and UTCDateTimeAttributes (#110 fixes #109)
* Correctly handle expected value generation for set types (#107 fixes #102)
» Use HTTP proxies configured by botocore (#100 fixes #92)
New features in this release:
* Return the cause of connection exceptions to the caller (#108 documented by #112)
» Configurable session class for custom connection pool size, etc (#91)
* Add attributes_to_get and consistent_read to more of the API (#79)
Contributors to this release:
* @ab
* @danielhochman
* @jlafon
* @joshowen
e @jpinner-lyft
* @mxr

e @nickgravgaard

2.20. Release Notes 61

PynamoDB Documentation, Release 5.5.0

2.20.52 v1.4.4

date 2015-11-10
This is a backward compatible, minor release.
Changes in this release:
» Support for enabling table streams at table creation time (thanks to @brln)

* Fixed bug where a value was always required for update_item when action was ‘delete’ (#90)

2.20.53 v1.4.3

date 2015-10-12

This is a backward compatible, minor release. Included are bug fixes and performance improvements.
A huge thank you to all who contributed to this release:

¢ Daniel Hochman

* Josh Owen

* Keith Mitchell

¢ Kevin Wilson
Changes in this release:

* Fixed bug where models without a range key weren’t handled correctly

* Botocore is now only used for preparing requests (for performance reasons)

* Removed the dependency on OrderedDict

* Fixed bug for zope interface compatibility (#71)

 Fixed bug where the range key was handled incorrectly for integer values

2.20.54 v1.4.2

date 2015-06-26
This is a backward compatible, minor bug fix release.
Bugs fixed in this release:

* Fixed bug where botocore exceptions were not being reraised.

2.20.55 v1.4.1

date 2015-06-26
This is a backward compatible, minor bug fix release.
Bugs fixed in this release:

* Fixed bug where a local variable could be unbound (#67).

62 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.20.56 v1.4.0

date 2015-06-23
This is a minor release, with backward compatible bug fixes.
Bugs fixed in this release:
* Added support for botocore 1.0.0 (#63)
* Fixed bug where Model.get() could fail in certain cases (#64)
* Fixed bug where JSON strings weren’t being encoded properly (#61)

2.20.57 v1.3.7

date 2015-04-06
This is a backward compatible, minor bug fix release.
Bugs fixed in this release:
* Fixed bug where range keys were not included in update_item (#59)

* Fixed documentation bug (#58)

2.20.58 v1.3.6

date 2015-04-06
This is a backward compatible, minor bug fix release.
Bugs fixed in this release:
* Fixed bug where arguments were used incorrectly in update_item (#54)
* Fixed bug where falsy values were used incorrectly in model constructors (#57), thanks @pior
* Fixed bug where the limit argument for scan and query was not always honored.
New features:

¢ Table counts with optional filters can now be queried using Model.count (x+filters)

2.20.59 v1.3.5

This is a backward compatible, minor bug fix release.
Bugs fixed in this release.
* Fixed bug where scan did not properly limit results (#45)
* Fixed bug where scan filters were not being preserved (#44)
* Fixed bug where items were mutated as an unexpected side effect (#47)

* Fixed bug where conditional operator wasn’t used in scan

2.20. Release Notes

63

PynamoDB Documentation, Release 5.5.0

2.20.60 v1.3.4

date 2014-10-06
This is a backward compatible, minor bug fix release.
Bugs fixed in this release.
* Fixed bug where attributes could not be used in multiple indexes when creating a table.

* Fixed bug where a dependency on mock was accidentally introduced.

2.20.61 v1.3.3

date 2014-9-18
This is a backward compatible, minor bug fix release, fixing the following issues
* Fixed bug with Python 2.6 compatibility (#28)
* Fixed bug where update_item was incorrectly checking attributes for null (#34)
Other minor improvements
* New API for backing up and restoring tables

* Better support for custom attributes (https://github.com/pynamodb/PynamoDB/commit/
0c2ba5894a532ed14b6c14e5059¢97dbb6531f12)

» Explicit Travis CI testing of Python 2.6, 2.7, 3.3, 3.4, and PyPy

¢ Tests added for round tripping unicode values

2.20.62 v1.3.2

date 2014-7-02

* This is a minor bug fix release, fixing a bug where query filters were incorrectly parsed (#26).

2.20.63 v1.3.1

date 2014-05-26
* This is a bug fix release, ensuring that KeyCondition and QueryFilter arguments are constructed correctly (#25).
* Added an example URL shortener to the examples.

¢ Minor documentation fixes.

64 Chapter 2. Topics

https://github.com/pynamodb/PynamoDB/commit/0c2ba5894a532ed14b6c14e5059e97dbb653ff12
https://github.com/pynamodb/PynamoDB/commit/0c2ba5894a532ed14b6c14e5059e97dbb653ff12

PynamoDB Documentation, Release 5.5.0

2.20.64 v1.3.0

date 2014-05-20

This is a minor release, with new backward compatible features and bug fixes.

Fixed bug where NULL and NOT_NULL were not set properly in query and scan operations (#24)
Support for specifying the index_name as a Index.Meta attribute (#23)

Support for specifying read and write capacity in Model.Meta (#22)

2.20.65 v1.2.2

date 2014-05-14

This is a minor bug fix release, resolving #21 (key_schema ordering for create_table).

2.20.66 v1.2.1

date 2014-05-07

This is a minor bug fix release, resolving #20.

2.20.67 v1.2.0

date 2014-05-06
Numerous documentation improvements
Improved support for conditional operations

Added support for filtering queries on non key attributes (http://aws.amazon.com/blogs/aws/
improved-queries-and-updates-for-dynamodb/)

Fixed issue with JSON loading where escaped characters caused an error (#17)

Minor bug fixes

2.20.68 v1.1.0

date 2014-04-14

PynamoDB now requires botocore version 0.42.0 or greater
Improved documentation

Minor bug fixes

New API endpoint for deleting model tables

Support for expected value conditions in item delete, update, and save
Support for limit argument to queries

Support for aliased attribute names

Example of using aliased attribute names:

2.20.

Release Notes 65

http://aws.amazon.com/blogs/aws/improved-queries-and-updates-for-dynamodb/
http://aws.amazon.com/blogs/aws/improved-queries-and-updates-for-dynamodb/

PynamoDB Documentation, Release 5.5.0

class AliasedModel (Model) :
class Meta:
table_name = "AliasedModel"
forum_name = UnicodeAttribute (hash_key=True, attr_name='fn')
subject = UnicodeAttribute (range_key=True, attr_name='s")

2.20.69 v1.0.0

date 2014-03-28

* Major update: New syntax for specifying models that is not backward compatible.

Important: The syntax for models has changed!

The old way:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread (Model) :
table_name = 'Thread'
forum_name = UnicodeAttribute (hash_key=True)

The new way:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread (Model) :
class Meta:
table_name = 'Thread'
forum_name = UnicodeAttribute (hash_key=True)

Other, less important changes:
¢ Added explicit support for specifying the server hostname in models
* Added documentation for using DynamoDB Local and dynalite
* Made examples runnable with DynamoDB Local and dynalite by default
* Added documentation for the use of default and null on model attributes

* Improved testing for index queries

66 Chapter 2. Topics

PynamoDB Documentation, Release 5.5.0

2.20.70 v0.1.13

date 2014-03-20

* Bug fix release. Proper handling of update_item attributes for atomic item updates, with tests. Fixes #7.

2.20.71 v0.1.12

date 2014-03-18

* Added a region attribute to model classes, allowing users to specify the AWS region, per model. Fixes #6.

2.20.72 v0.1.11

date 2014-02-26

¢ New exception behavior: Model.get and Model.refresh will now raise DoesNotExist if the item is not found in
the table.

* Correctly deserialize complex key types. Fixes #3

 Correctly construct keys for tables that don’t have both a hash key and a range key in batch get operations. Fixes
#5

 Better PEPS Compliance
* More tests

* Removed session and endpoint caching to avoid using stale IAM role credentials

2.21 Versioning Scheme

PynamoDB conforms to PEP 440. Generally, PynamoDB uses Semantic Versioning, where the version number has
the format:

MAJOR . MINOR . PATCH
* The MAJOR version number changes when backward incompatible changes are introduced.
* The MINOR version number changes when new features are added, but are backward compatible.

e The PATCH version number changes when backward compatible bug fixes are added.

2.22 Upgrading UnicodeSetAttribute

Warning: The behavior of ‘UnicodeSetAttribute’ has changed in backwards-incompatible ways as of the 1.6.0
and 3.0.1 releases of PynamoDB.

The following steps can be used to safely update PynamoDB assuming that the data stored in the item’s UnicodeSe-
tAttribute is not JSON. If JSON is being stored, these steps will not work and a custom migration plan is required. Be
aware that values such as numeric strings (i.e. “123”) are valid JSON.

When upgrading services that use PynamoDB with tables that contain UnicodeSetAttributes with a version < 1.6.0,
first deploy version 1.5.4 to prepare the read path for the new serialization format.

2.21. Versioning Scheme 67

https://www.python.org/dev/peps/pep-0440
http://semver.org/

PynamoDB Documentation, Release 5.5.0

Once all services that read from the tables have been deployed, then deploy version 2.2.0 and migrate your data using
the provided convenience methods on the Model. (Note: these methods are only available in version 2.2.0)

def get_save_kwargs (item) :
any conditional args needed to ensure data does not get overwritten
for example if your item has a ‘version attribute
{'version__eqg': item.version}

Re-serialize all UnicodeSetAttributes in the table by scanning all items.
See documentation of fix unicode_ set_attributes for rate limiting options
to avoid exceeding provisioned capacity.

Model.fix_unicode_set_attributes (get_save_kwargs)

Verify the migration is complete
print ("Migration Complete? " + Model.needs_unicode_set_fix())

Once all data has been migrated then upgrade to a version >= 3.0.1.

68 Chapter 2. Topics

CHAPTER
THREE

API DOCS

3.1 API

3.1.1 High Level API

DynamoDB Models for PynamoDB

class pynamodb.models.Model (hash_key: Optional[Any] = None, range_key: Optional[Any] =

None, _user_instantiated: bool = True, **attributes: Any)
Defines a PynamoDB Model

This model is backed by a table in DynamoDB. You can create the table by with the create_table method.

exception DoesNotExist (msg: Optional[str] = None, cause: Optional[Exception] = None)
Raised when an item queried does not exist

classmethod batch_get (items: Iterable[Union[Any, Iterable[Any]]], consistent_read: Op-
tional[bool] = None, attributes_to_get: Optional[Sequence[str]]
= None, settings: pynamodb.settings.OperationSettings = <py-

namodb.settings.OperationSettings object>) — Iterator[_T]
BatchGetltem for this model

Parameters items — Should be a list of hash keys to retrieve, or a list of tuples if range keys

are used.
classmethod batch_write (auto_commit: bool = True, settings: py-
namodb.settings.OperationSettings = <py-
namodb.settings.OperationSettings object>) — py-

namodb.models.BatchWrite[_T]
Returns a BatchWrite context manager for a batch operation.

Parameters auto_commit — If true, the context manager will commit writes incrementally
as items are written to as necessary to honor item count limits in the DynamoDB API (see
BatchWrite). Regardless of the value passed here, changes automatically commit on context
exit (whether successful or not).

classmethod count (hash_key: Optional[Any] = None, range_key_condition: Op-
tional{pynamodb.expressions.condition.Condition] = None, filter_condition:
Optional[pynamodb.expressions.condition.Condition] = None, consis-
tent_read: bool = False, index_name: Optional[str] = None, limit:
Optional[int] = None, rate_limit: Optional[float] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings
object>) — int

Provides a filtered count

Parameters

69

PynamoDB Documentation, Release 5.5.0

* hash_key — The hash key to query. Can be None.

* range_key_condition — Condition for range key

* filter condition — Condition used to restrict the query results

* consistent_read - If True, a consistent read is performed

¢ index_name — If set, then this index is used

e rate_limit - If set then consumed capacity will be limited to this amount per second

classmethod create_table (wait: bool = False, read_capacity_units: Optional[int] = None,
write_capacity_units: Optional[int] = None, billing_mode: Op-
tional[str] = None, ignore_update_ttl_errors: bool = False) — Any

Create the table for this model

Parameters
* wait - If set, then this call will block until the table is ready for use
* read capacity_units — Sets the read capacity units for this table

* write_capacity_units — Sets the write capacity units for this table

* billing mode - Sets the billing mode ‘PROVISIONED’ (default) or
‘PAY_PER_REQUEST" for this table

delete (condition: Optional[pynamodb.expressions.condition.Condition] = None, settings: py-

namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>, ¥,

add_version_condition: bool = True) — Any
Deletes this object from DynamoDB.

Parameters add_version_condition — For models which have a
VersionAttribute, specifies whether the item should only be deleted if its cur-
rent version matches the expected one. Set to False for a ‘delete anyway’ strategy.

Raises pynamodb.exceptions.DeleteError — If the record can not be deleted

classmethod delete_table () — Any
Delete the table for this model

classmethod describe_table () — Any
Returns the result of a DescribeTable operation on this model’s table

deserialize (attribute_values: Dict/str, Dict[str, Any]]) — None
Sets attributes sent back from DynamoDB on this object

classmethod exists () — bool
Returns True if this table exists, False otherwise

classmethod from raw_data (data: Dict[str, Any]) — _T
Returns an instance of this class from the raw data

Parameters data — A serialized DynamoDB object

classmethod get (hash_key: Any, range_key: Optional[Any] = None, consistent_read: bool
= False, attributes_to_get: Optional[Sequence[str]] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings ob-
ject>) — _T
Returns a single object using the provided keys

Parameters

* hash_key — The hash key of the desired item

70 Chapter 3. APl docs

PynamoDB Documentation, Release 5.5.0

* range_key — The range key of the desired item, only used when appropriate.
* consistent_read-
* attributes_to_get -

Raises ModelInstance.DoesNotExist — if the object to be updated does not exist

classmethod query (hash_key: Any, range_key_condition: Op-
tional{pynamodb.expressions.condition.Condition] = None, filter_condition:
Optional[pynamodb.expressions.condition.Condition] = None, con-
sistent_read.: bool = False, index_name: Optional[str] = None,

scan_index_forward: Optional[bool] = None, limit: Optionalfint] =
None, last_evaluated_key: Optional[Dict[str, Dict[str, Any]]] = None,
attributes_to_get: Optional[lterable[str]] = None, page_size: Op-
tional[int] = None, rate_limit: Optional[float] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings

object>) — pynamodb.pagination.Resultlterator[_T]
Provides a high level query API

Parameters
* hash key — The hash key to query
* range_key_condition — Condition for range key
e filter_condition — Condition used to restrict the query results
* consistent_read - If True, a consistent read is performed
¢ index_name - If set, then this index is used
e 1limit — Used to limit the number of results returned

* scan_index_forward - If set, then used to specify the same parameter to the Dy-
namoDB API. Controls descending or ascending results

* last_evaluated_key — If set, provides the starting point for query.

* attributes_to_get - If set, only returns these elements

* page_size — Page size of the query to DynamoDB

* rate_ limit - If set then consumed capacity will be limited to this amount per second

refresh (consistent_read: bool = False, settings: pynamodb.settings.OperationSettings = <py-

namodb.settings.OperationSettings object>) — None
Retrieves this object’s data from dynamodb and syncs this local object

Parameters
* consistent_read - If True, then a consistent read is performed.
* settings - per-operation settings
Raises ModelInstance.DoesNotExist — if the object to be updated does not exist

save (condition: Optional[pynamodb.expressions.condition.Condition] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>, *,

add_version_condition: bool = True) — Dict[str, Any]
Save this object to dynamodb

3.1. API 71

PynamoDB Documentation, Release 5.5.0

classmethod scan (filter_condition: Optional[pynamodb.expressions.condition.Condition] = None,
segment: Optional[int] = None, total_segments: Optional[int] = None, limit:
Optional[int] = None, last_evaluated_key: Optional[Dict[str, Dict[str, Any]]]
= None, page_size: Optional[int] = None, consistent_read: Optional[bool]
= None, index_name: Optional[str] = None, rate_limit: Optional[float]
= None, attributes_to_get: Optional[Sequence[str]] = None, settings:
pynamodb.settings.OperationSettings = <pynamodb.settings.OperationSettings

object>) — pynamodb.pagination.Resultlterator[_T]
Iterates through all items in the table

Parameters
e filter_ condition — Condition used to restrict the scan results
* segment — If set, then scans the segment
* total_ segments - If set, then specifies total segments
e 1limit — Used to limit the number of results returned
* last_evaluated_key - If set, provides the starting point for scan.
* page_size — Page size of the scan to DynamoDB
* consistent_read - If True, a consistent read is performed
¢ index_name — If set, then this index is used
* rate_limit - If set then consumed capacity will be limited to this amount per second

* attributes_to_get - If set, specifies the properties to include in the projection ex-
pression

serialize (null_check: bool = True) — Dict[str, Dict[str, Any]]
Serialize attribute values for DynamoDB

update (actions: List[pynamodb.expressions.update.Action], condition: Op-
tional[pynamodb.expressions.condition. Condition] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>, *,

add_version_condition: bool = True) — Any
Updates an item using the Updateltem operation.

Parameters
* actions —a list of Action updates to apply
* condition — an optional Condition on which to update
* settings — per-operation settings

* add_version_condition - For models which have a VersionAttribute, spec-
ifies whether only to update if the version matches the model that is currently loaded. Set
to False for a ‘last write wins’ strategy. Regardless, the version will always be incremented
to prevent “rollbacks” by concurrent save () calls.

Raises
* ModelInstance.DoesNotExist — if the object to be updated does not exist
* pynamodb. exceptions.UpdateError — if the condition is not met

classmethod update_ttl (ignore_update_ttl_errors: bool) — None
Attempt to update the TTL on the table. Certain implementations (eg: dynalite) do not support updating
TTLs and will fail.

PynamoDB attributes

72 Chapter 3. APl docs

PynamoDB Documentation, Release 5.5.0

class pynamodb.attributes.Attribute (hash_key: bool = False, range_key: bool = False, null:
Optional[bool] = None, default: Optional[Union[_T,
Callable[][...], _T]]] = None, default for_new: Op-
tional[Union[Any, Callable[[...], _T]]] = None,

attr_name: Optional[str] = None)
An attribute of a model

deserialize (value: Any) — Any
Performs any needed deserialization on the value

serialize (value: Any) — Any
This method should return a dynamodb compatible value

class pynamodb.attributes.BinaryAttribute (hash_key: bool = False, range_key: bool
= False, null: Optional[bool] = None, de-
fault: Optional{Union[_T, Callable[[...], _T]]]
= None, default_for_new: Optional[Union[Any,
Callable[]...], _T]]] = None, attr_name: Op-

tional[str] = None)
A binary attribute

deserialize (value)
Returns a decoded byte string from a base64 encoded value

serialize (value)
Returns a base64 encoded binary string

class pynamodb.attributes.BinarySetAttribute (hash_key: bool = False, range_key: bool
= False, null: Optional[bool] = None, de-
fault: Optional[Union[_T, Callable[]...],
_T]]] = None, default_for_new: Op-
tional[Union[Any, Callable[][...], _T]]] =

None, attr_name: Optional[str] = None)
A binary set

deserialize (value)
Returns a set of decoded byte strings from base64 encoded values.

serialize (value)
Returns a list of base64 encoded binary strings. Encodes empty sets as “None”.

class pynamodb.attributes.BooleanAttribute (hash_key: bool = False, range_key: bool =
False, null: Optional[bool] = None, default:
Optional[Union[_T, Callable[][...], _T]]] =
None, default_for_new: Optional{Union[Any,
Callable[]...], _T]]] = None, attr_name: Op-

tional[str] = None)
A class for boolean attributes

deserialize (value)
Performs any needed deserialization on the value

serialize (value)
This method should return a dynamodb compatible value

class pynamodb.attributes.DiscriminatorAttribute (attr_name: Optional[str] = None)

deserialize (value)
Returns the class corresponding to the given discriminator value.

3.1. API 73

PynamoDB Documentation, Release 5.5.0

serialize (value)
Returns the discriminator value corresponding to the given class.

class pynamodb.attributes.DynamicMapAttribute (**attributes)

A map attribute that supports declaring attributes (like an AttributeContainer) but will also store any other values
that are set on it (like a raw MapAttribute).

>>> class MyDynamicMapAttribute (DynamicMapAttribute) :

>>> a_date_time = UTCDateTimeAttribute () # raw map attributes cannot,
wserialize/deserialize datetime values

>>>

>>> dynamic_map = MyDynamicMapAttribute ()

>>> dynamic_map.a_date_time = datetime.utcnow ()

>>> dynamic_map.a_number = 5

>>> dynamic_map.serialize() # {'a_date_time': {'S': 'xxx'}, 'a_number': {'N': '5
')

deserialize (values)
Decode as a dict.

serialize (values, * null_check: bool = True)
This method should return a dynamodb compatible value

class pynamodb.attributes.JSONAttribute (hash_key: bool = False, range_key: bool

= False, null: Optional[bool] = None, de-
fault: Optional[Union[_T, Callable[]...], _T]]]
= None, default_for_new: Optional[Union[Any,
Callable[]...], _T]]] = None, attr_name: Op-

tional[str] = None)
A JSON Attribute

Encodes JSON to unicode internally

deserialize (value)
Deserializes JSON

serialize (value) — Optional[str]
Serializes JSON to unicode

class pynamodb.attributes.ListAttribute (hash_key: bool = False, range_key: bool =

False, null: Optional[bool] = None, default: Op-
tional{ Union[Any, Callable[[...], Any]]] = None,
attr_name: Optional[str] = None, of: Op-
tional[Type[_T]] = None)

deserialize (values)
Decode from list of AttributeValue types.

serialize (values, * null_check: bool = True)
Encode the given list of objects into a list of AttributeValue types.

class pynamodb.attributes.MapAttribute (**attributes)

A Map Attribute

The MapAttribute class can be used to store a JSON document as “raw” name-value pairs, or it can be subclassed
and the document fields represented as class attributes using Attribute instances.

To support the ability to subclass MapAttribute and use it as an AttributeContainer, instances of MapAttribute
behave differently based both on where they are instantiated and on their type. Because of this complicated
behavior, a bit of an introduction is warranted.

74

Chapter 3. API docs

PynamoDB Documentation, Release 5.5.0

Models that contain a MapAttribute define its properties using a class attribute on the model. For example,
below we define “MyModel” which contains a MapAttribute “my_map”:

class MyModel(Model): my_map = MapAttribute(attr_name="dynamo_name”, default={})

When instantiated in this manner (as a class attribute of an AttributeContainer class), the MapAttribute class acts
as an instance of the Attribute class. The instance stores data about the attribute (in this example the dynamo
name and default value), and acts as a data descriptor, storing any value bound to it on the attribute_values
dictionary of the containing instance (in this case an instance of MyModel).

Unlike other Attribute types, the value that gets bound to the containing instance is a new instance of Ma-
pAttribute, not an instance of the primitive type. For example, a UnicodeAttribute stores strings in the at-
tribute_values of the containing instance; a MapAttribute does not store a dict but instead stores a new instance
of itself. This difference in behavior is necessary when subclassing MapAttribute in order to access the Attribute
data descriptors that represent the document fields.

For example, below we redefine “MyModel” to use a subclass of MapAttribute as “my_map”:
class MyMapAttribute(MapAttribute): my_internal_map = MapAttribute()
class MyModel(Model): my_map = MyMapAttribute(attr_name="dynamo_name”, default = {})

In order to set the value of my_internal _map on an instance of MyModel we need the bound value for “my_map”
to be an instance of MapAuttribute so that it acts as a data descriptor:

MyModel().my_map.my_internal_map = { ‘foo’: ‘bar’}
That is the attribute access of “my_map” must return a MyMapAttribute instance and not a dict.

When an instance is used in this manner (bound to an instance of an AttributeContainer class), the MapAttribute
class acts as an AttributeContainer class itself. The instance does not store data about the attribute, and does not
act as a data descriptor. The instance stores name-value pairs in its internal astribute_values dictionary.

Thus while MapAttribute multiply inherits from Attribute and AttributeContainer, a MapAttribute instance does
not behave as both an Attribute AND an AttributeContainer. Rather an instance of MapAttribute behaves EI-
THER as an Attribute OR as an AttributeContainer, depending on where it was instantiated.

So, how do we create this dichotomous behavior? All MapAttribute instances are initialized as AttributeCon-
tainers only. During construction of AttributeContainer classes (subclasses of MapAttribute and Model), any in-
stances that are class attributes are transformed from AttributeContainers to Attributes (via the _make_attribute
method call).

deserialize (values)
Decode as a dict.

serialize (values, * null_check: bool = True)
This method should return a dynamodb compatible value

class pynamodb.attributes.NullAttribute (hash_key: bool = False, range_key: bool
= False, null: Optional[bool] = None, de-
fault: Optional[Union[_T, Callable[]...], _T]]]
= None, default_for_new: Optional[Union[Any,
Callable[]...], _T]]] = None, attr_name: Op-
tional[str] = None)

deserialize (value)
Performs any needed deserialization on the value

serialize (value)
This method should return a dynamodb compatible value

3.1. API 75

PynamoDB Documentation, Release 5.5.0

class pynamodb.attributes.NumberAttribute (hash_key: bool = False, range_key: bool
= False, null: Optional[bool] = None, de-
fault: Optional{Union[_T, Callable[[...], _T]]]
= None, default_for_new: Optional[Union[Any,
Callable[]...], _T]]] = None, attr_name: Op-

tional[str] = None)
A number attribute

deserialize (value)
Decode numbers from JSON

serialize (value)
Encode numbers as JSON

class pynamodb.attributes.NumberSetAttribute (hash_key: bool = False, range_key: bool
= False, null: Optional[bool] = None, de-
fault: Optional[Union[_T, Callablel]...],
_T]]] = None, default_for_new: Op-
tional[Union[Any, Callable[]...], _T]]] =
None, attr_name: Optional[str] = None)
A number set attribute

deserialize (value)
Returns a set from a JSON list of numbers.

serialize (value)
Encodes a set of numbers as a JSON list. Encodes empty sets as “None”.

class pynamodb.attributes.TTLAttribute (hash_key: bool = False, range_key: bool =
False, null: Optional[bool] = None, default: Op-
tional[Union[_T, Callable[][...], _T]]] = None, de-
fault_for_new: Optional[Union[Any, Callable[]. ..],
_T]]] = None, attr_name: Optional[str] = None)
A time-to-live attribute that signifies when the item expires and can be automatically deleted. It can be assigned

with a timezone-aware datetime value (for absolute expiry time) or a timedelta value (for expiry relative to the
current time), but always reads as a UTC datetime value.

deserialize (value)
Deserializes a timestamp (Unix time) as a UTC datetime.

serialize (value)
Serializes a datetime as a timestamp (Unix time).

class pynamodb.attributes.UTCDateTimeAttribute (hash_key: bool = False, range_key:
bool = False, null: Optional[bool]
= None, default: Optional{Union[_T,
Callable[[...], _T]]] = None, de-
Sfault_for_new: Optional[Union[Any,
Callable[]. ..], _T]]] = None,
attr_name: Optional[str] = None)

An attribute for storing a UTC Datetime

deserialize (value)
Takes a UTC datetime string and returns a datetime object

serialize (value)
Takes a datetime object and returns a string

76 Chapter 3. APl docs

PynamoDB Documentation, Release 5.5.0

class pynamodb.attributes.UnicodeAttribute (hash_key: bool = False, range_key: bool =
False, null: Optional[bool] = None, default:
Optional[Union[_T, Callable[][...], _T]]] =
None, default_for_new: Optional[Union[Any,
Callable[]...], _T]]] = None, attr_name: Op-
tional[str] = None)
A unicode attribute
class pynamodb.attributes.UnicodeSetAttribute (hash_key: bool = False, range_key: bool
= False, null: Optional[bool] = None, de-
fault: Optional[Union[_T, Callable[]...],
_T]]] = None, default_for_new: Op-
tional[Union[Any, Callable[[...], _T]]]

= None, attr_name: Optional[str] =

None)
A unicode set

deserialize (value)
Returns a set from a list of strings.

serialize (value)
Returns a list of strings. Encodes empty sets as “None”.

class pynamodb.attributes.VersionAttribute (hash_key: bool = False, range_key: bool =
False, null: Optional[bool] = None, default:
Optional[Union[_T, Callable[][...], _T]]] =
None, default_for_new: Optional{Union[Any,
Callable[]...], _T]]] = None, attr_name: Op-

tional[str] = None)
A number attribute that implements optimistic locking.

deserialize (value)
Decode numbers from JSON and cast to int.

serialize (value)
Cast value to int then encode as JSON

PynamoDB Indexes

class pynamodb.indexes.AllProjection
An ALL projection

class pynamodb.indexes.GlobalSecondaryIndex
A global secondary index

class pynamodb.indexes.IncludeProjection (non_attr_keys: Optional[List[str]] = None)
An INCLUDE projection

class pynamodb.indexes.Index
Base class for secondary indexes

classmethod count (hash_key: Any, range_key_condition: Op-
tional[pynamodb.expressions.condition.Condition] = None, filter_condition:
Optional[pynamodb.expressions.condition.Condition] = None, consis-

tent_read: bool = False, limit: Optional[int] = None, rate_limit: Op-

tional[float] = None) — int
Count on an index

3.1. API 77

PynamoDB Documentation, Release 5.5.0

classmethod query (hash_key: Any, range_key_condition: Op-
tional{pynamodb.expressions.condition.Condition] = None, filter_condition:
Optional[pynamodb.expressions.condition.Condition] = None, consis-

tent_read: Optional[bool] = False, scan_index_forward: Optional[bool] =
None, limit: Optional[int] = None, last_evaluated_key: Optional[Dict{str,
Dict[str, Any]]] = None, attributes_to_get: Optional[List[str]] = None,
page_size: Optional[int] = None, rate_limit: Optional[float] = None) —
pynamodb.pagination.Resultlterator[_M]

Queries an index

classmethod scan (filter_condition: Optional[pynamodb.expressions.condition.Condition] = None,
segment: Optional[int] = None, total_segments: Optional[int] = None, limit:
Optional[int] = None, last_evaluated_key: Optional[Dict[str, Dict[str, Any]]]
= None, page_size: Optional[int] = None, consistent_read: Optional[bool] =
None, rate_limit: Optional[float] = None, attributes_to_get: Optional[List[str]]
= None) — pynamodb.pagination.Resultlterator[_M]
Scans an index

class pynamodb.indexes.KeysOnlyProjection
Keys only projection

class pynamodb.indexes.LocalSecondaryIndex
A local secondary index

class pynamodb.indexes.Projection
A class for presenting projections

class pynamodb.transactions.TransactGet (*args: Any, **kwargs: Any)

get (model_cls: Type[_M], hash_key: Any, range_key: Optional[Any] = None) — py-

namodb.models._ModelFuture[_M]
Adds the operation arguments for an item to list of models to get returns a _ModelFuture object as a

placeholder
Parameters
e model_ cls-—
* hash_key -
* range_key -
Returns

class pynamodb.transactions.TransactWrite (client_request_token: Optional[str] = None, re-
turn_item_collection_metrics: Optional[str] =
None, **kwargs: Any)

class pynamodb.transactions.Transaction (connection: py-
namodb.connection.base. Connection, re-
turn_consumed_capacity: Optional[str] = None)
Base class for a type of transaction operation

class pynamodb.pagination.PageIterator (operation: Callable, args: Any, kwargs: Dict/str,
Any], rate_limit: Optional[float] = None, set-
tings: pynamodb.settings.OperationSettings = <py-
namodb.settings.OperationSettings object>)
Pagelterator handles Query and Scan result pagination.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html#Query.Pagination
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html#Scan.Pagination

78 Chapter 3. APl docs

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html#Query.Pagination
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html#Scan.Pagination

PynamoDB Documentation, Release 5.5.0

class pynamodb.pagination.RateLimiter (rate_limit: float, time_module: Optional[Any] =

None)
RateLimiter limits operations to a pre-set rate of units/seconds

Example:
Initialize a RateLimiter with the desired rate rate_limiter = RateLimiter(rate_limit)
Now, every time before calling an operation, call acquire() rate_limiter.acquire()

And after an operation, update the number of units consumed rate_limiter.consume(units)

acquire () — None
Sleeps the appropriate amount of time to follow the rate limit restriction

Returns None

consume (units: int) — None
Records the amount of units consumed.

Parameters units — Number of units consumed
Returns None

property rate_limit
A limit of units per seconds

class pynamodb.pagination.ResultIterator (operation: Callable, args: Any, kwargs:
Dict[str, Any], map_fn: Optional[Callable]

= None, limit: Optional[int] = None,
rate_limit: Optional[float] = None, settings:
pynamodb.settings.OperationSettings = <py-

namodb.settings.OperationSettings object>)
Resultlterator handles Query and Scan item pagination.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html#Query.Pagination
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html#Scan.Pagination

3.1.2 Low Level API

PynamoDB lowest level connection

class pynamodb.connection.Connection (region: Optional[str] = None, host: Optional[str]
= None, read_timeout_seconds: Optional[float] =
None, connect_timeout_seconds: Optional[float]
= None, max_retry_attempts: Optional[int] =
None, base_backoff_ms: Optional[int] = None,

max_pool_connections: Optional[int] = None,
extra_headers: Optional[Mapping[str, str]] =
None, aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,

aws_session_token: Optional[str] = None)
A higher level abstraction over botocore

add_meta_table (meta_table: pynamodb.connection.base.MetaTable) — None
Adds information about the table’s schema.
batch_get_item (table_name: str, keys: Sequence[str], consistent_read: Optional[bool] =
None, return_consumed_capacity: Optional[str] = None, attributes_to_get: Op-
tional[Any] = None, settings: pynamodb.settings.OperationSettings = <py-
namodb.settings.OperationSettings object>) — Dict

3.1. API 79

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html#Query.Pagination
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html#Scan.Pagination

PynamoDB Documentation, Release 5.5.0

Performs the batch get item operation

batch_write_item (table_name: str, put_items: Optional[Any] = None, delete_items: Op-

tional[Any] = None, return_consumed_capacity: Optional[str] = None,
return_item_collection_metrics: ~ Optional[str] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings

object>) — Dict
Performs the batch_write_item operation

property client
Returns a botocore dynamodb client

create_table (table_name: str, attribute_definitions: Optional[Any] = None, key_schema:
Optional[Any] = None, read_capacity_units: Optional[int] = None,
write_capacity_units: ~ Optional[int] = None, global_secondary_indexes: Op-
tional[Any] = None, local_secondary_indexes: Optional[Any] = None,
stream_specification: Optional[Dict] = None, billing_mode: str = 'PROVISIONED',

tags: Optional[Dict[str, str]] = None) — Dict
Performs the CreateTable operation

delete_item (fable_name: str, hash_key: str, range_key: Optional[str] = None, con-
dition: Optional[pynamodb.expressions.condition.Condition] = None, re-
turn_values: Optional[str] = None, return_consumed_capacity: Optional[str]
= None, return_item_collection_metrics: Optional[str] = None, settings: py-

namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>)
— Dict .
Performs the Deleteltem operation and returns the result

delete table (table_name: str) — Dict
Performs the DeleteTable operation

describe_table (table_name: str) — Dict
Performs the DescribeTable operation

dispatch (operation_name: Str, operation_kwargs: Dict, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>)
— Dict

Dispatches operation_name with arguments operation_kwargs
Raises TableDoesNotExist if the specified table does not exist

get_attribute_type (table_name: str, attribute_name: str, value: Optional[Any] = None) — str
Returns the proper attribute type for a given attribute name :param value: The attribute value an be supplied
just in case the type is already included

get_consumed_capacity_map (return_consumed_capacity: str) — Dict
Builds the consumed capacity map that is common to several operations

get_exclusive_start_key_ map (table_name: str, exclusive_start_key: str) — Dict
Builds the exclusive start key attribute map

get_identifier map (table_name: str, hash_key: str, range_key: Optional[str] = None, key: str =
'Key') — Dict
Builds the identifier map that is common to several operations

get_item (table_name: str, hash_key: str, range_key: Optional[str] = None, consis-
tent_read: bool = False, attributes_to_get: Optional[Any] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>) —

Dict
Performs the Getltem operation and returns the result

Chapter 3. API docs

PynamoDB Documentation, Release 5.5.0

get_item_attribute_map (fable_name: str, attributes: Any, item_key: str = 'Item’, pythonic_key:

bool = True) — Dict
Builds up a dynamodb compatible AttributeValue map

get_item_collection_map (return_item_collection_metrics: str) — Dict
Builds the item collection map

get_meta_table (table_name: str) — pynamodb.connection.base.MetaTable
Returns information about the table’s schema.

get_return_values_map (return_values: str) — Dict
Builds the return values map that is common to several operations

get_return_values_on_condition_failure_map (return_values_on_condition_failure:

]) str) — Dict
Builds the return values map that is common to several operations

list_tables (exclusive_start_table_name: Optional[str] = None, limit: Optional[int] = None) —
Dict
Performs the ListTables operation

parse_attribute (attribute: Any, return_type: bool = False) — Any
Returns the attribute value, where the attribute can be a raw attribute value, or a dictionary containing the
type: {‘S’: ‘String value’ }

put_item (table_name: str, hash_key: str, range_key: Optional[str] = None, attributes: Op-
tional[Any] = None, condition: Optional[pynamodb.expressions.condition. Condition]
= None, return_values: Optional[str] = None, return_consumed_capacity: Op-
tional[str] = None, return_item_collection_metrics: Optional[str] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>) —

Dict
Performs the Putltem operation and returns the result

query (table_name: str, hash_key: str, range_key_condition: Op-
tional[pynamodb.expressions.condition.Condition] = None, filter_condition: Op-
tional[Any] = None, attributes_to_get: Optional[Any] = None, consistent_read: bool
= False, exclusive_start_key: Optional[Any] = None, index_name: Optional[str] =

None, limit: Optional[int] = None, return_consumed_capacity: Optional[str] = None,
scan_index_forward: Optional[bool] = None, select: Optional[str] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>) —

Dict
Performs the Query operation and returns the result

scan (table_name: str, filter_condition: Optional[Any] = None, attributes_to_get: Optional[Any] =
None, limit: Optional[int] = None, return_consumed_capacity: Optional[str] = None, exclu-
sive_start_key: Optional[str] = None, segment: Optional[int] = None, total_segments: Op-
tional[int] = None, consistent_read: Optional[bool] = None, index_name: Optional[str] = None,
settings: pynamodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>)

— Dict .
Performs the scan operation

property session
Returns a valid botocore session

transact_get_items (get_items: Sequence[Dict], return_consumed_capacity: Optional[str]
= None, settings: pynamodb.settings.OperationSettings = <py-

namodb.settings.OperationSettings object>) — Dict
Performs the TransactGet operation and returns the result

3.1. API 81

PynamoDB Documentation, Release 5.5.0

transact_write_items (condition_check_items: Sequence[Dict], delete_items: Sequence[Dict],
put_items: Sequence[Dict], update_items: Sequence[Dict],
client_request_token: Optional[str] = None, return_consumed_capacity:
Optional[str] = None, return_item_collection_metrics: Optional[str]
= None, settings: pynamodb.settings.OperationSettings = <py-

namodb.settings.OperationSettings object>) — Dict
Performs the TransactWrite operation and returns the result

update_item (table_name: str, hash_key: str, range_key: Optional[str] = None, ac-
tions: Optional[Sequence[pynamodb.expressions.update.Action]] = None,
condition: Optional[pynamodb.expressions.condition.Condition] = None, re-
turn_consumed_capacity: Optional[str] = None, return_item_collection_metrics:
Optional[str] = None, return_values: Optional[str] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>)

— Dict .
Performs the Updateltem operation

update_table (fable_name: str, read_capacity_units: Optional[int] = None, write_capacity_units:
Optional[int] = None, global_secondary_index_updates: Optional[Any] = None) —

Dict .
Performs the UpdateTable operation

update_time_to_1live (table_name: str, ttl_attribute_name: str) — Dict
Performs the UpdateTimeToLive operation

class pynamodb.connection.TableConnection (fable_name: str, region: Optional[str] =

None, host: Optional[str] = None, con-
nect_timeout_seconds: Optional[float] =
None, read_timeout_seconds: Optional[float]
= None, max_retry_attempts: Optional[int]
= None, base_backoff_ms: Optional[int] =
None, max_pool_connections: Optional[int] =
None, extra_headers: Optional[Mapping|str,
str]] = None, aws_access_key_id: Op-
tional[str] = None, aws_secret_access_key:
Optional[str] = None, aws_session_token:
Optional[str] = None, *, meta_table: Op-
tional{pynamodb.connection.base.MetaTable]

= None)
A higher level abstraction over botocore
batch_get_item (keys: Sequence[str], consistent_read: Optional[bool] = None, re-
turn_consumed_capacity: ~ Optional[str] = None, attributes_to_get: Op-

tional[Any] = None, settings: pynamodb.settings.OperationSettings = <py-

namodb.settings.OperationSettings object>) — Dict
Performs the batch get item operation

batch_write_item (put_items: Optional[Any] = None, delete_items: Optional[Any]
= None, return_consumed_capacity: Optional[str] = None, re-
turn_item_collection_metrics: Optional[str] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings

object>) — Dict
Performs the batch_write_item operation

create_table (attribute_definitions: Optional[Any] = None, key_schema: Optional[Any] = None,
read_capacity_units: Optional[int] = None, write_capacity_units: Optional[int] =
None, global_secondary_indexes: Optional[Any] = None, local_secondary_indexes:
Optional[Any] = None, stream_specification: Optional[Dict] = None, billing_mode:
str = 'PROVISIONED', tags: Optional[Dict[str, str]] = None) — Dict

82

Chapter 3. API docs

PynamoDB Documentation, Release 5.5.0

Performs the CreateTable operation and returns the result

delete_item (hash_key: str, range_key: Optional[str] = None, condition: Op-
tional[pynamodb.expressions.condition. Condition] = None, return_values:
Optional[str] = None, return_consumed_capacity: Optional[str] = None,
return_item_collection_metrics: Optional[str] = None, settings: py-

namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>)

— Dict i
Performs the Deleteltem operation and returns the result

delete table () — Dict
Performs the DeleteTable operation and returns the result

describe table () — Dict
Performs the DescribeTable operation and returns the result

get_item (hash_key: str, range_key: Optional[str] = None, consistent_read: bool = False, at-
tributes_to_get: Optional[Any] = None, settings: pynamodb.settings.OperationSettings =

<pynamodb.settings.OperationSettings object>) — Dict
Performs the Getltem operation and returns the result

get_meta table () — pynamodb.connection.base.MetaTable
Returns a MetaTable

put_item (hash_key: str, range_key: Optional[str] = None, attributes: Optional[Any]
= None, condition: Optional[pynamodb.expressions.condition.Condition] = None,
return_values: Optional[str] = None, return_consumed_capacity: Optional[str]
= None, return_item_collection_metrics: Optional[str] = None, settings: py-

namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>) —

Dict
Performs the Putltem operation and returns the result

query (hash_key: str, range_key_condition: Optional[pynamodb.expressions.condition.Condition] =
None, filter_condition: Optional[Any] = None, attributes_to_get: Optional[Any] = None, con-
sistent_read: bool = False, exclusive_start_key: Optional[Any] = None, index_name: Op-
tional[str] = None, limit: Optional[int] = None, return_consumed_capacity: Optional[str] =
None, scan_index_forward: Optional[bool] = None, select: Optional[str] = None, settings: py-

namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>) — Dict
Performs the Query operation and returns the result

scan (filter_condition: Optional[Any] = None, attributes_to_get: Optional[Any] = None, limit: Op-
tional[int] = None, return_consumed_capacity: Optional[str] = None, segment: Optional[int]
= None, total_segments: Optional[int] = None, exclusive_start_key: Optional[str] = None,
consistent_read: Optional[bool] = None, index_name: Optional[str] = None, settings: py-

namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>) — Dict
Performs the scan operation

update_item (hash_key: str, range_key: Optional[str] = None, actions: Op-
tional[Sequence[pynamodb.expressions.update.Action]] = None, condi-
tion: Optional[pynamodb.expressions.condition.Condition] = None, re-
turn_consumed_capacity: Optional[str] = None, return_item_collection_metrics:
Optional[str] = None, return_values: Optional[str] = None, settings: py-
namodb.settings.OperationSettings = <pynamodb.settings.OperationSettings object>)

— Dict .
Performs the Updateltem operation

update_table (read_capacity_units: Optional[int] = None, write_capacity_units: Optional[int] =
None, global_secondary_index_updates: Optional[Any] = None) — Dict
Performs the UpdateTable operation and returns the result

3.1. API 83

PynamoDB Documentation, Release 5.5.0

update_time_to_1live (ttl_attr_name: str) — Dict
Performs the UpdateTimeToLive operation and returns the result

3.1.3 Exceptions

exception pynamodb.exceptions.PynamoDBConnectionError (msg: Optional[str] = None,
cause: Optional[Exception]

) = None)
A base class for connection errors

exception pynamodb.exceptions.DeleteError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when an error occurs deleting an item

exception pynamodb.exceptions.QueryError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when queries fail

exception pynamodb.exceptions.ScanError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when a scan operation fails

exception pynamodb.exceptions.PutError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when an item fails to be created

exception pynamodb.exceptions.UpdateError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when an item fails to be updated

exception pynamodb.exceptions.GetError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when an item fails to be retrieved

exception pynamodb.exceptions.TableError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
An error involving a dynamodb table operation

exception pynamodb.exceptions.TableDoesNotExist (fable_name: str)
Raised when an operation is attempted on a table that doesn’t exist

exception pynamodb.exceptions.DoesNotExist (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when an item queried does not exist

exception pynamodb.exceptions.TransactWriteError (msg: Optional[str] = None, cause:
Optional[Exception] = None)
Raised when a TransactWrite operation fails

exception pynamodb.exceptions.TransactGetError (msg: Optional[str] = None, cause: Op-
tional[Exception] = None)
Raised when a TransactGet operation fails

exception pynamodb.exceptions.InvalidStateError (msg: Optional[str] = None, cause:
Optional[Exception] = None)
Raises when the internal state of an operation context is invalid

exception pynamodb.exceptions.AttributeDeserializationError (attr_name: Str,
attr_type: str)
Raised when attribute type is invalid

exception pynamodb.exceptions.AttributeNullError (attr_name: str)

84 Chapter 3. APl docs

PynamoDB Documentation, Release 5.5.0

class pynamodb.exceptions.CancellationReason (* code: str, message: Optional[str])
A reason for a transaction cancellation.

3.1. API 85

PynamoDB Documentation, Release 5.5.0

86

Chapter 3. APl docs

CHAPTER
FOUR

INDICES AND TABLES

* genindex
¢ modindex

¢ search

87

PynamoDB Documentation, Release 5.5.0

88

Chapter 4. Indices and tables

P

pynamodb.
pynamodb.
pynamodb.
pynamodb.
pynamodb.
pynamodb.

attributes, 72
connection, 79
indexes, 77
models, 69
pagination, 78
transactions, 78

PYTHON MODULE INDEX

89

PynamoDB Documentation, Release 5.5.0

90

Python Module Index

A

acquire () (pynamodb.pagination.RateLimiter
method), 79

add_meta_table () (py-
namodb.connection.Connection method),

79
AllProjection (class in pynamodb.indexes), 77
Attribute (class in pynamodb.attributes), 72
AttributeDeserializationError, 84
AttributeNullError, 84

B

batch_get () (pynamodb.models.Model class
method), 69

batch_get_item() (py-
namodb.connection.Connection method),
79

batch_get_item() (py-

namodb.connection.TableConnection method),

82

batch_write () (pynamodb.models.Model class
method), 69

batch_write_ item{() (py-
namodb.connection.Connection method),
80

batch_write_item() (py-

namodb.connection.TableConnection method),

82
BinaryAttribute (class in pynamodb.attributes), 73
BinarySetAttribute (class in py-

namodb.attributes), 73

BooleanAttribute (class in pynamodb.attributes),
73

C

CancellationReason (class in
namodb.exceptions), 84

client () (pynamodb.connection.Connection prop-
erty), 80

Connection (class in pynamodb.connection), 79

consume () (pynamodb.pagination.RateLimiter

method), 79

py-

INDEX

count () (pynamodb.indexes.Index class method), 77

count () (pynamodb.models.Model class method), 69

create_table () (pynamodb.connection.Connection
method), 80

create_table () (py-
namodb.connection.TableConnection method),
82

create_table () (pynamodb.models.Model class
method), 70

D

delete () (pynamodb.models.Model method), 70

delete_item() (pynamodb.connection.Connection
method), 80

delete_item() (py-
namodb.connection.TableConnection method),
83

delete_table()
method), 80

delete_table () (py-
namodb.connection.TableConnection method),

(pynamodb.connection. Connection

83

delete_table () (pynamodb.models.Model class
method), 70

DeleteError, 84

describe_table () (py-
namodb.connection.Connection method),
80

describe_table () (py-

namodb.connection.TableConnection method),

83

describe_table () (pynamodb.models.Model class
method), 70

deserialize () (pynamodb.attributes.Attribute
method), 73

deserialize () (py-
namodb.attributes.BinaryAttribute method),
73

deserialize () (py-
namodb.attributes.BinarySetAttribute method),
73

deserialize () (py-

91

PynamoDB Documentation, Release 5.5.0

namodb.attributes.BooleanAttribute method),
73

deserialize () (py-
namodb.attributes.DiscriminatorAttribute
method), 73

deserialize () (py-
namodb.attributes. DynamicMapAttribute
method), 74

deserialize () (pynamodb.attributes.JSONAttribute
method), 74

deserialize () (pynamodb.attributes. ListAttribute
method), 74

deserialize () (pynamodb.attributes.MapAttribute
method), 75

deserialize () (pynamodb.attributes.NullAttribute
method), 75

deserialize () (py-
namodb.attributes.NumberAttribute method),
76

deserialize () (py-
namodb.attributes.NumberSetAttribute
method), 76

deserialize () (pynamodb.attributes. TTLAttribute
method), 76

deserialize () (py-
namodb.attributes. UnicodeSetAttribute
method), 77

deserialize () (py-
namodb.attributes. UTCDateTimeAttribute
method), 76

deserialize () (py-
namodb.attributes.VersionAttribute method),
77

deserialize () (pynamodb.models.Model method),
70

DiscriminatorAttribute (class in
namodb.attributes), 73

dispatch () (pynamodb.connection. Connection
method), 80

DoesNotExist, 84

DynamicMapAttribute

namodb.attributes), 74

py-

(class in

E

exists () (pynamodb.models.Model class method), 70

F

from_raw_data ()

method), 70

(pynamodb.models.Model class

G

get () (pynamodb.models.Model class method), 70
get () (pynamodb.transactions.TransactGet method), 78

get_attribute_type () (py-
namodb.connection.Connection method),
80

get_consumed_capacity_map () (py-
namodb.connection.Connection method),
80

get_exclusive_start_key_map () (py-
namodb.connection.Connection method),
80

get_identifier_map () (py-
namodb.connection.Connection method),
80

get_item() (pynamodb.connection. Connection
method), 80

get_item () (pynamodb.connection.TableConnection
method), 83

get_item_attribute_map () (py-
namodb.connection.Connection method),
80

get_item collection_map () (py-
namodb.connection.Connection method),
81

get_meta_table () (py-
namodb.connection.Connection method),
81

get_meta_table () (py-
namodb.connection.TableConnection method),
83

get_return_values_map () (py-
namodb.connection.Connection method),

81

get_return_values_on_condition_failure_map ()

(pynamodb.connection. Connection method), 81
GetError, 84
GlobalSecondaryIndex

namodb.indexes), 77

(class in py-

IncludeProjection (class in pynamodb.indexes),
77

Index (class in pynamodb.indexes), 77

InvalidStateError, 84

J

JSONAttribute (class in pynamodb.attributes), 74

K

KeysOnlyProjection (class in pynamodb.indexes),
78

L

list_tables ()
method), 81
ListAttribute (class in pynamodb.attributes), 74

(pynamodb.connection. Connection

92

Index

PynamoDB Documentation, Release 5.5.0

LocalSecondaryIndex (class in

namodb.indexes), 78

M

MapAttribute (class in pynamodb.attributes), 74

Model (class in pynamodb.models), 69

Model .DoesNotExist, 69

module
pynamodb.
pynamodb.

attributes, 72
connection, 79
pynamodb. indexes, 77
pynamodb.models, 69
pynamodb.pagination, 78
pynamodb.transactions, 78

N

NullAttribute (class in pynamodb.attributes), 75

NumberAttribute (class in pynamodb.attributes), 75

NumberSetAttribute (class in py-
namodb.attributes), 76

P

Pagelterator (class in pynamodb.pagination), 78
parse_attribute () (py-
namodb.connection.Connection method),
81
Projection (class in pynamodb.indexes), 78
put_item{() (pynamodb.connection. Connection
method), 81
put_item () (pynamodb.connection.TableConnection
method), 83
PutError, 84
pynamodb.attributes
module, 72
pynamodb.connection
module, 79
pynamodb.indexes
module, 77
pynamodb.models
module, 69
pynamodb.pagination
module, 78
pynamodb.transactions
module, 78
PynamoDBConnectionError, 84

Q

query () (pynamodb.connection.Connection method),

81
query () (pynamodb.connection.Table Connection
method), 83
query () (pynamodb.indexes.Index class method), 77
query () (pynamodb.models.Model class method), 71

QueryError, 84

R

rate_limit () (pynamodb.pagination.RateLimiter
property), 719

RateLimiter (class in pynamodb.pagination), 78

refresh () (pynamodb.models.Model method), 71

ResultIterator (class in pynamodb.pagination), 79

S

save () (pynamodb.models.Model method), 71

scan () (pynamodb.connection.Connection method), 81

scan () (pynamodb.connection.TableConnection
method), 83

scan () (pynamodb.indexes.Index class method), 78

scan () (pynamodb.models.Model class method), 71

ScanError, 84

serialize () (pynamodb.attributes.Attribute method),
73

serialize () (pynamodb.attributes.BinaryAttribute
method), 73

serialize () (pynamodb.attributes.BinarySetAttribute
method), 73

serialize () (pynamodb.attributes.BooleanAttribute
method), 73

serialize () (pynamodb.attributes.DiscriminatorAttribute

method), 73

serialize () (pynamodb.attributes.DynamicMapAttribute

method), 74
serialize () (pynamodb.attributes.JSONAttribute
method), 74
serialize ()
method), 74
serialize ()
method), 75
serialize ()
method), 75
serialize () (pynamodb.attributes.NumberAttribute
method), 76
serialize () (pynamodb.attributes.NumberSetAttribute
method), 76
serialize ()
method), 76
serialize () (pynamodb.attributes.UnicodeSetAttribute
method), 77

(pynamodb.attributes.ListAttribute
(pynamodb.attributes.MapAttribute

(pynamodb.attributes.NullAttribute

(pynamodb.attributes. TTLAttribute

serialize () (pynamodb.attributes.UTCDateTimeAttribute

method), 76
serialize () (pynamodb.attributes.VersionAttribute
method), 77
serialize () (pynamodb.models.Model method), 72
session () (pynamodb.connection.Connection prop-

erty), 81

T

TableConnection (class in pynamodb.connection),
82

Index

93

PynamoDB Documentation, Release 5.5.0

TableDoesNotExist, 84
TableError, 84

transact_get_items () (py-
namodb.connection. Connection method),
81

transact_write_items () (py-
namodb.connection.Connection method),
81

TransactGet (class in pynamodb.transactions), 78
TransactGetError, 84

Transaction (class in pynamodb.transactions), 78
TransactWrite (class in pynamodb.transactions), 78
TransactWriteError, 84

TTLAttribute (class in pynamodb.attributes), 76

U

UnicodeAttribute (class in pynamodb.attributes),
76

UnicodeSetAttribute (class in py-
namodb.attributes), 77

update () (pynamodb.models.Model method), 72

update_item() (pynamodb.connection.Connection
method), 82

update_item/() (py-
namodb.connection.TableConnection method),
83

update_table () (pynamodb.connection.Connection
method), 82

update_table () (py-
namodb.connection.TableConnection method),
83

update_time_to_live () (py-
namodb.connection.Connection method),
82

update_time_to_live () (py-
namodb.connection.TableConnection method),
83

update_ttl () (pynamodb.models.Model class
method), 72

UpdateError, 84

UTICDateTimeAttribute (class in py-

namodb.attributes), 76

\Y

VersionAttribute (class in pynamodb.attributes),
77

94

Index

	Features
	Topics
	Usage
	Basic Tutorial
	Index Queries
	Batch Operations
	Update Operations
	Conditional Operations
	Polymorphism
	Custom Attributes
	Transaction Operations
	Optimistic Locking
	Rate-Limited Operation
	Use PynamoDB Locally
	Signals
	PynamoDB Examples
	Settings
	Low Level API
	AWS Access
	Logging
	Contributing
	Release Notes
	Versioning Scheme
	Upgrading UnicodeSetAttribute

	API docs
	API

	Indices and tables
	Python Module Index
	Index

