Actual source code: plexorient.c

  1: #include <petsc/private/dmpleximpl.h>
  2: #include <petscsf.h>

  4: /*@
  5:   DMPlexOrientPoint - Act with the given orientation on the cone points of this mesh point, and update its use in the mesh.

  7:   Not Collective

  9:   Input Parameters:
 10: + dm - The DM
 11: . p  - The mesh point
 12: - o  - The orientation

 14:   Level: intermediate

 16: .seealso: DMPlexOrient(), DMPlexGetCone(), DMPlexGetConeOrientation(), DMPlexInterpolate(), DMPlexGetChart()
 17: @*/
 18: PetscErrorCode DMPlexOrientPoint(DM dm, PetscInt p, PetscInt o)
 19: {
 20:   DMPolytopeType  ct;
 21:   const PetscInt *arr, *cone, *ornt, *support;
 22:   PetscInt       *newcone, *newornt;
 23:   PetscInt        coneSize, c, supportSize, s;

 26:   DMPlexGetCellType(dm, p, &ct);
 27:   arr  = DMPolytopeTypeGetArrangment(ct, o);
 28:   DMPlexGetConeSize(dm, p, &coneSize);
 29:   DMPlexGetCone(dm, p, &cone);
 30:   DMPlexGetConeOrientation(dm, p, &ornt);
 31:   DMGetWorkArray(dm, coneSize, MPIU_INT, &newcone);
 32:   DMGetWorkArray(dm, coneSize, MPIU_INT, &newornt);
 33:   for (c = 0; c < coneSize; ++c) {
 34:     DMPolytopeType ft;
 35:     PetscInt       nO;

 37:     DMPlexGetCellType(dm, cone[c], &ft);
 38:     nO   = DMPolytopeTypeGetNumArrangments(ft)/2;
 39:     newcone[c] = cone[arr[c*2+0]];
 40:     newornt[c] = DMPolytopeTypeComposeOrientation(ft, arr[c*2+1], ornt[arr[c*2+0]]);
 42:   }
 43:   DMPlexSetCone(dm, p, newcone);
 44:   DMPlexSetConeOrientation(dm, p, newornt);
 45:   DMRestoreWorkArray(dm, coneSize, MPIU_INT, &newcone);
 46:   DMRestoreWorkArray(dm, coneSize, MPIU_INT, &newornt);
 47:   /* Update orientation of this point in the support points */
 48:   DMPlexGetSupportSize(dm, p, &supportSize);
 49:   DMPlexGetSupport(dm, p, &support);
 50:   for (s = 0; s < supportSize; ++s) {
 51:     DMPlexGetConeSize(dm, support[s], &coneSize);
 52:     DMPlexGetCone(dm, support[s], &cone);
 53:     DMPlexGetConeOrientation(dm, support[s], &ornt);
 54:     for (c = 0; c < coneSize; ++c) {
 55:       PetscInt po;

 57:       if (cone[c] != p) continue;
 58:       /* ornt[c] * 0 = target = po * o so that po = ornt[c] * o^{-1} */
 59:       po   = DMPolytopeTypeComposeOrientationInv(ct, ornt[c], o);
 60:       DMPlexInsertConeOrientation(dm, support[s], c, po);
 61:     }
 62:   }
 63:   return 0;
 64: }

 66: /*
 67:   - Checks face match
 68:     - Flips non-matching
 69:   - Inserts faces of support cells in FIFO
 70: */
 71: static PetscErrorCode DMPlexCheckFace_Internal(DM dm, PetscInt *faceFIFO, PetscInt *fTop, PetscInt *fBottom, PetscInt cStart, PetscInt fStart, PetscInt fEnd, PetscBT seenCells, PetscBT flippedCells, PetscBT seenFaces)
 72: {
 73:   const PetscInt *support, *coneA, *coneB, *coneOA, *coneOB;
 74:   PetscInt        supportSize, coneSizeA, coneSizeB, posA = -1, posB = -1;
 75:   PetscInt        face, dim, seenA, flippedA, seenB, flippedB, mismatch, c;

 77:   face = faceFIFO[(*fTop)++];
 78:   DMGetDimension(dm, &dim);
 79:   DMPlexGetSupportSize(dm, face, &supportSize);
 80:   DMPlexGetSupport(dm, face, &support);
 81:   if (supportSize < 2) return 0;
 83:   seenA    = PetscBTLookup(seenCells,    support[0]-cStart);
 84:   flippedA = PetscBTLookup(flippedCells, support[0]-cStart) ? 1 : 0;
 85:   seenB    = PetscBTLookup(seenCells,    support[1]-cStart);
 86:   flippedB = PetscBTLookup(flippedCells, support[1]-cStart) ? 1 : 0;

 88:   DMPlexGetConeSize(dm, support[0], &coneSizeA);
 89:   DMPlexGetConeSize(dm, support[1], &coneSizeB);
 90:   DMPlexGetCone(dm, support[0], &coneA);
 91:   DMPlexGetCone(dm, support[1], &coneB);
 92:   DMPlexGetConeOrientation(dm, support[0], &coneOA);
 93:   DMPlexGetConeOrientation(dm, support[1], &coneOB);
 94:   for (c = 0; c < coneSizeA; ++c) {
 95:     if (!PetscBTLookup(seenFaces, coneA[c]-fStart)) {
 96:       faceFIFO[(*fBottom)++] = coneA[c];
 97:       PetscBTSet(seenFaces, coneA[c]-fStart);
 98:     }
 99:     if (coneA[c] == face) posA = c;
101:   }
103:   for (c = 0; c < coneSizeB; ++c) {
104:     if (!PetscBTLookup(seenFaces, coneB[c]-fStart)) {
105:       faceFIFO[(*fBottom)++] = coneB[c];
106:       PetscBTSet(seenFaces, coneB[c]-fStart);
107:     }
108:     if (coneB[c] == face) posB = c;
110:   }

113:   if (dim == 1) {
114:     mismatch = posA == posB;
115:   } else {
116:     mismatch = coneOA[posA] == coneOB[posB];
117:   }

119:   if (mismatch ^ (flippedA ^ flippedB)) {
121:     if (!seenA && !flippedA) {
122:       PetscBTSet(flippedCells, support[0]-cStart);
123:     } else if (!seenB && !flippedB) {
124:       PetscBTSet(flippedCells, support[1]-cStart);
125:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
127:   PetscBTSet(seenCells, support[0]-cStart);
128:   PetscBTSet(seenCells, support[1]-cStart);
129:   return 0;
130: }

132: /*@
133:   DMPlexOrient - Give a consistent orientation to the input mesh

135:   Input Parameters:
136: . dm - The DM

138:   Note: The orientation data for the DM are change in-place.
139: $ This routine will fail for non-orientable surfaces, such as the Moebius strip.

141:   Level: advanced

143: .seealso: DMCreate(), DMPLEX
144: @*/
145: PetscErrorCode DMPlexOrient(DM dm)
146: {
147:   MPI_Comm           comm;
148:   PetscSF            sf;
149:   const PetscInt    *lpoints;
150:   const PetscSFNode *rpoints;
151:   PetscSFNode       *rorntComp = NULL, *lorntComp = NULL;
152:   PetscInt          *numNeighbors, **neighbors;
153:   PetscSFNode       *nrankComp;
154:   PetscBool         *match, *flipped;
155:   PetscBT            seenCells, flippedCells, seenFaces;
156:   PetscInt          *faceFIFO, fTop, fBottom, *cellComp, *faceComp;
157:   PetscInt           numLeaves, numRoots, dim, h, cStart, cEnd, c, cell, fStart, fEnd, face, off, totNeighbors = 0;
158:   PetscMPIInt        rank, size, numComponents, comp = 0;
159:   PetscBool          flg, flg2;
160:   PetscViewer        viewer = NULL, selfviewer = NULL;

162:   PetscObjectGetComm((PetscObject) dm, &comm);
163:   MPI_Comm_rank(comm, &rank);
164:   MPI_Comm_size(comm, &size);
165:   PetscOptionsHasName(((PetscObject) dm)->options,((PetscObject) dm)->prefix, "-orientation_view", &flg);
166:   PetscOptionsHasName(((PetscObject) dm)->options,((PetscObject) dm)->prefix, "-orientation_view_synchronized", &flg2);
167:   DMGetPointSF(dm, &sf);
168:   PetscSFGetGraph(sf, &numRoots, &numLeaves, &lpoints, &rpoints);
169:   /* Truth Table
170:      mismatch    flips   do action   mismatch   flipA ^ flipB   action
171:          F       0 flips     no         F             F           F
172:          F       1 flip      yes        F             T           T
173:          F       2 flips     no         T             F           T
174:          T       0 flips     yes        T             T           F
175:          T       1 flip      no
176:          T       2 flips     yes
177:   */
178:   DMGetDimension(dm, &dim);
179:   DMPlexGetVTKCellHeight(dm, &h);
180:   DMPlexGetHeightStratum(dm, h,   &cStart, &cEnd);
181:   DMPlexGetHeightStratum(dm, h+1, &fStart, &fEnd);
182:   PetscBTCreate(cEnd - cStart, &seenCells);
183:   PetscBTMemzero(cEnd - cStart, seenCells);
184:   PetscBTCreate(cEnd - cStart, &flippedCells);
185:   PetscBTMemzero(cEnd - cStart, flippedCells);
186:   PetscBTCreate(fEnd - fStart, &seenFaces);
187:   PetscBTMemzero(fEnd - fStart, seenFaces);
188:   PetscCalloc3(fEnd - fStart, &faceFIFO, cEnd-cStart, &cellComp, fEnd-fStart, &faceComp);
189:   /*
190:    OLD STYLE
191:    - Add an integer array over cells and faces (component) for connected component number
192:    Foreach component
193:      - Mark the initial cell as seen
194:      - Process component as usual
195:      - Set component for all seenCells
196:      - Wipe seenCells and seenFaces (flippedCells can stay)
197:    - Generate parallel adjacency for component using SF and seenFaces
198:    - Collect numComponents adj data from each proc to 0
199:    - Build same serial graph
200:    - Use same solver
201:    - Use Scatterv to to send back flipped flags for each component
202:    - Negate flippedCells by component

204:    NEW STYLE
205:    - Create the adj on each process
206:    - Bootstrap to complete graph on proc 0
207:   */
208:   /* Loop over components */
209:   for (cell = cStart; cell < cEnd; ++cell) cellComp[cell-cStart] = -1;
210:   do {
211:     /* Look for first unmarked cell */
212:     for (cell = cStart; cell < cEnd; ++cell) if (cellComp[cell-cStart] < 0) break;
213:     if (cell >= cEnd) break;
214:     /* Initialize FIFO with first cell in component */
215:     {
216:       const PetscInt *cone;
217:       PetscInt        coneSize;

219:       fTop = fBottom = 0;
220:       DMPlexGetConeSize(dm, cell, &coneSize);
221:       DMPlexGetCone(dm, cell, &cone);
222:       for (c = 0; c < coneSize; ++c) {
223:         faceFIFO[fBottom++] = cone[c];
224:         PetscBTSet(seenFaces, cone[c]-fStart);
225:       }
226:       PetscBTSet(seenCells, cell-cStart);
227:     }
228:     /* Consider each face in FIFO */
229:     while (fTop < fBottom) {
230:       DMPlexCheckFace_Internal(dm, faceFIFO, &fTop, &fBottom, cStart, fStart, fEnd, seenCells, flippedCells, seenFaces);
231:     }
232:     /* Set component for cells and faces */
233:     for (cell = 0; cell < cEnd-cStart; ++cell) {
234:       if (PetscBTLookup(seenCells, cell)) cellComp[cell] = comp;
235:     }
236:     for (face = 0; face < fEnd-fStart; ++face) {
237:       if (PetscBTLookup(seenFaces, face)) faceComp[face] = comp;
238:     }
239:     /* Wipe seenCells and seenFaces for next component */
240:     PetscBTMemzero(fEnd - fStart, seenFaces);
241:     PetscBTMemzero(cEnd - cStart, seenCells);
242:     ++comp;
243:   } while (1);
244:   numComponents = comp;
245:   if (flg) {
246:     PetscViewer v;

248:     PetscViewerASCIIGetStdout(comm, &v);
249:     PetscViewerASCIIPushSynchronized(v);
250:     PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for serial flipped cells:\n", rank);
251:     PetscBTView(cEnd-cStart, flippedCells, v);
252:     PetscViewerFlush(v);
253:     PetscViewerASCIIPopSynchronized(v);
254:   }
255:   /* Now all subdomains are oriented, but we need a consistent parallel orientation */
256:   if (numLeaves >= 0) {
257:     /* Store orientations of boundary faces*/
258:     PetscCalloc2(numRoots,&rorntComp,numRoots,&lorntComp);
259:     for (face = fStart; face < fEnd; ++face) {
260:       const PetscInt *cone, *support, *ornt;
261:       PetscInt        coneSize, supportSize;

263:       DMPlexGetSupportSize(dm, face, &supportSize);
264:       if (supportSize != 1) continue;
265:       DMPlexGetSupport(dm, face, &support);

267:       DMPlexGetCone(dm, support[0], &cone);
268:       DMPlexGetConeSize(dm, support[0], &coneSize);
269:       DMPlexGetConeOrientation(dm, support[0], &ornt);
270:       for (c = 0; c < coneSize; ++c) if (cone[c] == face) break;
271:       if (dim == 1) {
272:         /* Use cone position instead, shifted to -1 or 1 */
273:         if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = 1-c*2;
274:         else                                                rorntComp[face].rank = c*2-1;
275:       } else {
276:         if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = ornt[c] < 0 ? -1 :  1;
277:         else                                                rorntComp[face].rank = ornt[c] < 0 ?  1 : -1;
278:       }
279:       rorntComp[face].index = faceComp[face-fStart];
280:     }
281:     /* Communicate boundary edge orientations */
282:     PetscSFBcastBegin(sf, MPIU_2INT, rorntComp, lorntComp,MPI_REPLACE);
283:     PetscSFBcastEnd(sf, MPIU_2INT, rorntComp, lorntComp,MPI_REPLACE);
284:   }
285:   /* Get process adjacency */
286:   PetscMalloc2(numComponents, &numNeighbors, numComponents, &neighbors);
287:   viewer = PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)dm));
288:   if (flg2) PetscViewerASCIIPushSynchronized(viewer);
289:   PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&selfviewer);
290:   for (comp = 0; comp < numComponents; ++comp) {
291:     PetscInt  l, n;

293:     numNeighbors[comp] = 0;
294:     PetscMalloc1(PetscMax(numLeaves, 0), &neighbors[comp]);
295:     /* I know this is p^2 time in general, but for bounded degree its alright */
296:     for (l = 0; l < numLeaves; ++l) {
297:       const PetscInt face = lpoints[l];

299:       /* Find a representative face (edge) separating pairs of procs */
300:       if ((face >= fStart) && (face < fEnd) && (faceComp[face-fStart] == comp)) {
301:         const PetscInt rrank = rpoints[l].rank;
302:         const PetscInt rcomp = lorntComp[face].index;

304:         for (n = 0; n < numNeighbors[comp]; ++n) if ((rrank == rpoints[neighbors[comp][n]].rank) && (rcomp == lorntComp[lpoints[neighbors[comp][n]]].index)) break;
305:         if (n >= numNeighbors[comp]) {
306:           PetscInt supportSize;

308:           DMPlexGetSupportSize(dm, face, &supportSize);
310:           if (flg) PetscViewerASCIIPrintf(selfviewer, "[%d]: component %d, Found representative leaf %d (face %d) connecting to face %d on (%d, %d) with orientation %d\n", rank, comp, l, face, rpoints[l].index, rrank, rcomp, lorntComp[face].rank);
311:           neighbors[comp][numNeighbors[comp]++] = l;
312:         }
313:       }
314:     }
315:     totNeighbors += numNeighbors[comp];
316:   }
317:   PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&selfviewer);
318:   PetscViewerFlush(viewer);
319:   if (flg2) PetscViewerASCIIPopSynchronized(viewer);
320:   PetscMalloc2(totNeighbors, &nrankComp, totNeighbors, &match);
321:   for (comp = 0, off = 0; comp < numComponents; ++comp) {
322:     PetscInt n;

324:     for (n = 0; n < numNeighbors[comp]; ++n, ++off) {
325:       const PetscInt face = lpoints[neighbors[comp][n]];
326:       const PetscInt o    = rorntComp[face].rank*lorntComp[face].rank;

328:       if      (o < 0) match[off] = PETSC_TRUE;
329:       else if (o > 0) match[off] = PETSC_FALSE;
330:       else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid face %d (%d, %d) neighbor: %d comp: %d", face, rorntComp[face], lorntComp[face], neighbors[comp][n], comp);
331:       nrankComp[off].rank  = rpoints[neighbors[comp][n]].rank;
332:       nrankComp[off].index = lorntComp[lpoints[neighbors[comp][n]]].index;
333:     }
334:     PetscFree(neighbors[comp]);
335:   }
336:   /* Collect the graph on 0 */
337:   if (numLeaves >= 0) {
338:     Mat          G;
339:     PetscBT      seenProcs, flippedProcs;
340:     PetscInt    *procFIFO, pTop, pBottom;
341:     PetscInt    *N   = NULL, *Noff;
342:     PetscSFNode *adj = NULL;
343:     PetscBool   *val = NULL;
344:     PetscMPIInt *recvcounts = NULL, *displs = NULL, *Nc, p, o;
345:     PetscMPIInt  size = 0;

347:     PetscCalloc1(numComponents, &flipped);
348:     if (rank == 0) MPI_Comm_size(comm, &size);
349:     PetscCalloc4(size, &recvcounts, size+1, &displs, size, &Nc, size+1, &Noff);
350:     MPI_Gather(&numComponents, 1, MPI_INT, Nc, 1, MPI_INT, 0, comm);
351:     for (p = 0; p < size; ++p) {
352:       displs[p+1] = displs[p] + Nc[p];
353:     }
354:     if (rank == 0) PetscMalloc1(displs[size],&N);
355:     MPI_Gatherv(numNeighbors, numComponents, MPIU_INT, N, Nc, displs, MPIU_INT, 0, comm);
356:     for (p = 0, o = 0; p < size; ++p) {
357:       recvcounts[p] = 0;
358:       for (c = 0; c < Nc[p]; ++c, ++o) recvcounts[p] += N[o];
359:       displs[p+1] = displs[p] + recvcounts[p];
360:     }
361:     if (rank == 0) PetscMalloc2(displs[size], &adj, displs[size], &val);
362:     MPI_Gatherv(nrankComp, totNeighbors, MPIU_2INT, adj, recvcounts, displs, MPIU_2INT, 0, comm);
363:     MPI_Gatherv(match, totNeighbors, MPIU_BOOL, val, recvcounts, displs, MPIU_BOOL, 0, comm);
364:     PetscFree2(numNeighbors, neighbors);
365:     if (rank == 0) {
366:       for (p = 1; p <= size; ++p) {Noff[p] = Noff[p-1] + Nc[p-1];}
367:       if (flg) {
368:         PetscInt n;

370:         for (p = 0, off = 0; p < size; ++p) {
371:           for (c = 0; c < Nc[p]; ++c) {
372:             PetscPrintf(PETSC_COMM_SELF, "Proc %d Comp %d:\n", p, c);
373:             for (n = 0; n < N[Noff[p]+c]; ++n, ++off) {
374:               PetscPrintf(PETSC_COMM_SELF, "  edge (%d, %d) (%d):\n", adj[off].rank, adj[off].index, val[off]);
375:             }
376:           }
377:         }
378:       }
379:       /* Symmetrize the graph */
380:       MatCreate(PETSC_COMM_SELF, &G);
381:       MatSetSizes(G, Noff[size], Noff[size], Noff[size], Noff[size]);
382:       MatSetUp(G);
383:       for (p = 0, off = 0; p < size; ++p) {
384:         for (c = 0; c < Nc[p]; ++c) {
385:           const PetscInt r = Noff[p]+c;
386:           PetscInt       n;

388:           for (n = 0; n < N[r]; ++n, ++off) {
389:             const PetscInt    q = Noff[adj[off].rank] + adj[off].index;
390:             const PetscScalar o = val[off] ? 1.0 : 0.0;

392:             MatSetValues(G, 1, &r, 1, &q, &o, INSERT_VALUES);
393:             MatSetValues(G, 1, &q, 1, &r, &o, INSERT_VALUES);
394:           }
395:         }
396:       }
397:       MatAssemblyBegin(G, MAT_FINAL_ASSEMBLY);
398:       MatAssemblyEnd(G, MAT_FINAL_ASSEMBLY);

400:       PetscBTCreate(Noff[size], &seenProcs);
401:       PetscBTMemzero(Noff[size], seenProcs);
402:       PetscBTCreate(Noff[size], &flippedProcs);
403:       PetscBTMemzero(Noff[size], flippedProcs);
404:       PetscMalloc1(Noff[size], &procFIFO);
405:       pTop = pBottom = 0;
406:       for (p = 0; p < Noff[size]; ++p) {
407:         if (PetscBTLookup(seenProcs, p)) continue;
408:         /* Initialize FIFO with next proc */
409:         procFIFO[pBottom++] = p;
410:         PetscBTSet(seenProcs, p);
411:         /* Consider each proc in FIFO */
412:         while (pTop < pBottom) {
413:           const PetscScalar *ornt;
414:           const PetscInt    *neighbors;
415:           PetscInt           proc, nproc, seen, flippedA, flippedB, mismatch, numNeighbors, n;

417:           proc     = procFIFO[pTop++];
418:           flippedA = PetscBTLookup(flippedProcs, proc) ? 1 : 0;
419:           MatGetRow(G, proc, &numNeighbors, &neighbors, &ornt);
420:           /* Loop over neighboring procs */
421:           for (n = 0; n < numNeighbors; ++n) {
422:             nproc    = neighbors[n];
423:             mismatch = PetscRealPart(ornt[n]) > 0.5 ? 0 : 1;
424:             seen     = PetscBTLookup(seenProcs, nproc);
425:             flippedB = PetscBTLookup(flippedProcs, nproc) ? 1 : 0;

427:             if (mismatch ^ (flippedA ^ flippedB)) {
429:               if (!flippedB) {
430:                 PetscBTSet(flippedProcs, nproc);
431:               } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
433:             if (!seen) {
434:               procFIFO[pBottom++] = nproc;
435:               PetscBTSet(seenProcs, nproc);
436:             }
437:           }
438:         }
439:       }
440:       PetscFree(procFIFO);
441:       MatDestroy(&G);
442:       PetscFree2(adj, val);
443:       PetscBTDestroy(&seenProcs);
444:     }
445:     /* Scatter flip flags */
446:     {
447:       PetscBool *flips = NULL;

449:       if (rank == 0) {
450:         PetscMalloc1(Noff[size], &flips);
451:         for (p = 0; p < Noff[size]; ++p) {
452:           flips[p] = PetscBTLookup(flippedProcs, p) ? PETSC_TRUE : PETSC_FALSE;
453:           if (flg && flips[p]) PetscPrintf(comm, "Flipping Proc+Comp %d:\n", p);
454:         }
455:         for (p = 0; p < size; ++p) {
456:           displs[p+1] = displs[p] + Nc[p];
457:         }
458:       }
459:       MPI_Scatterv(flips, Nc, displs, MPIU_BOOL, flipped, numComponents, MPIU_BOOL, 0, comm);
460:       PetscFree(flips);
461:     }
462:     if (rank == 0) PetscBTDestroy(&flippedProcs);
463:     PetscFree(N);
464:     PetscFree4(recvcounts, displs, Nc, Noff);
465:     PetscFree2(nrankComp, match);

467:     /* Decide whether to flip cells in each component */
468:     for (c = 0; c < cEnd-cStart; ++c) {if (flipped[cellComp[c]]) PetscBTNegate(flippedCells, c);}
469:     PetscFree(flipped);
470:   }
471:   if (flg) {
472:     PetscViewer v;

474:     PetscViewerASCIIGetStdout(comm, &v);
475:     PetscViewerASCIIPushSynchronized(v);
476:     PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for parallel flipped cells:\n", rank);
477:     PetscBTView(cEnd-cStart, flippedCells, v);
478:     PetscViewerFlush(v);
479:     PetscViewerASCIIPopSynchronized(v);
480:   }
481:   /* Reverse flipped cells in the mesh */
482:   for (c = cStart; c < cEnd; ++c) {
483:     if (PetscBTLookup(flippedCells, c-cStart)) {
484:       DMPlexOrientPoint(dm, c, -1);
485:     }
486:   }
487:   PetscBTDestroy(&seenCells);
488:   PetscBTDestroy(&flippedCells);
489:   PetscBTDestroy(&seenFaces);
490:   PetscFree2(numNeighbors, neighbors);
491:   PetscFree2(rorntComp, lorntComp);
492:   PetscFree3(faceFIFO, cellComp, faceComp);
493:   return 0;
494: }